Proving Termination and Computational Complexity
of Computer Programs

Anton Dergunov*

CSEdays 2013

In computability theory, the halting (or termination) problem can be stated as follows:
“given a description of a computer program decide whether the program will always finish
running or could potentially execute forever.” A termination proof plays a critical role in
formal verification. Partial correctness requires that an output of an algorithm is correct.
Total correctness additionally requires that an algorithm terminates.

Alan Turing proved that a general algorithm to solve the halting problem can not
exist. However, this does not mean that we are always unable to prove termination. New
tools that are able to automatically prove the correctness of software are being developed.

We represent a computer program by a set of its states S, a set of its possible initial
states I C S and a transition relation R C S x S between states that the program can
make during execution. Formally we prove a program termination by proving that its
transition relation is well-founded, meaning that it does not permit infinite sequences of
states s = s1, Sg, ... where s; € S and R(s;, s;+1) [1]. The popular method to show that a
relation R C S x S is well founded is to find a structure preserving map (homeomorphism)
from structure (R, S) to some well-ordered set (>,T). The structure (>,7T) forms a well
order iff it is a total order and every nonempty subset of S has a least element. Such
maps are called ranking functions.

There are several tools to prove termination of computer programs. TERMINATOR
program [2] automatically searches for the relevant ranking function to prove termination,
while in DAFNY it must be specified explicitly. DAFNY [3] is a programming language
with built-in specification constructs that are used to verify correctness of programs. It
employs decreases annotations to prove that programs terminate. A decreases annotation
specifies a ranking function (termination measure) which values become strictly smaller
each time a loop is traversed or a recursive method is called. This value is bounded so that
it does not decrease forever. Several kinds of values can be used in decreases annotations,
such as natural numbers or sets of values which have natural lower bounds (0 and empty
set correspondingly). DAFNY proves that the termination measure gets smaller on each
iteration. In simple cases DAFNY is able to guess termination measure, otherwise it must
be specified explicitly, as in a method to search in a binary tree:

method Search(x: int) returns(found: bool)
decreases ReachableNodes;

{
if (x = data) {found := true;}
else if (left # null A x < data) {found := left.Search(x);}
else if (right # null A x > data) {found := right.Search(x);}
else {found := false;}

}

*Independent Researcher



o=

In this example ReachableNodes is a member variable of a tree node class that stores a
set of nodes reachable from the that node. The search method is guaranteed to terminate,
because by construction the number of nodes reachable from the child nodes is strictly
smaller than the number of nodes reachable from the parent node. DAFNY proves that
the body of that method satisfies the decreases annotation.

The contribution of this article is the proposal to generalize proving termination to
proving computational complexity in DAFNY. The idea is to verify not only that the
termination measure decreases, but also the pace of its change. No special annotations
exist in DAFNY for this functionality. But we can use existing annotations. For example,
we can prove that the worst case time complexity of binary search algorithm is logarithmic:

method binarySearch(a: array<int>, key: int) returns(index: int)
requires a # null;

{
var low = 0; var high = a.Llength;
var old_low := 0; var old_high := high x 2;
while (low < high)
invariant high < a.length;
decreases (high — low);
invariant high = low V (old_high — old_low) / (high — low) > 2;
{
old_low := low; old_high := high;
var mid := low + (high — low) / 2;
if (key > a[mid]) {low := mid + 1;}
else if (key < a[mid]) {high := mid;}
else {index := mid; return;}
}
index := —1;
}

Line 8 specifies termination measure that becomes strictly smaller each time a loop
is traversed. In line 9 we specify that the termination measure reduces at least twice
each iteration. DAFNY verifies that the body of this method satisfies the specification,
thus proving the complexity of the method. Special keywords can be added to DAFNY to
reduce boilerplate code to prove computational complexity.

Acknowledgements. This article is based on results of a student project with Omer
Subasi, Krasnoshtan Dmytro, Georgiy Savchenko and Pavel Ajtkulov at Microsoft Sum-
mer School in Software Engineering and Verification held in Moscow in 2011. The project
was supervised by Ben Livshits and Stephan Tobies.

References

[1] Byron Cook. Principles of program termination. Engineering Methods and Tools for
Software Safety and Security, 22:161, 20009.

[2] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs for
systems code. In Proceedings of the 2006 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’06, pages 415-426, New York, NY, USA,
2006. ACM.

[3] K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness.
In Edmund M. Clarke and Andrei Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning, volume 6355 of Lecture Notes in Computer Science, pages
348-370. Springer Berlin Heidelberg, 2010.



