Oobuucnennsa ma npucmpoi, wio peKongizypyromscs

217

UDC 681.234

A.V. DERGUNOWV!

!Lobachevsky State University of Nizhny Novgorod

SPECIFICATION AND AUTOMATIC DETECTION OF PERFORMANCE PROBLEMS
IN MESSAGE PASSING (MPI) APPLICATIONS

Traditional way to analyze performance of message passing (MPI) applications is via visualization of their ex-
ecution traces. Several tools were developed to aid this activity; one example of such tool is Jumpshot. Howev-
er, performance analysis with such tools is a complex task due to large traces and complex interactions be-
tween processes. In this paper a new way to analyze performance is proposed by automatic detection of per-
formance problems in message passing applications. Performance problem is defined as a set of actions that
inhibit good performance and is specified using tracing and analysis rules.

Keywords: performance problems specification, performance problems detection, message passing applica-

tions.
Introduction

Performance properties are very important for par-
allel applications, so several tools were developed to
analyze performance. Most popular performance analy-
sis tools for MPI applications perform visualization of
execution traces. Example of such tool is Jumpshot [1]
which performs visualization using timeline view. But
the task of performance analysis using such tools is
quite complex, because trace files usually consists of
many events and interaction between events is very
complex. Performance analysis also requires expert
knowledge about MPI implementation. This paper pro-
poses a new way to do performance analysis which is
based on expert methodology of performance problems
descriptions.

1. Model of an MPI application

An MPI application [2] is defined as a set of com-
municating processes PR ={PR;,...,PRy}. Communi-
cation is performed using initiating actions in defined
sequence:

PRi Dail,...,aiMi ,| =1..,N

Every action is a call of a function defined by MPI
standard F={f };k=1..,K. Each function f, has
input and output arguments:

IN IN IN
FAk = (fakl ,...,fakLﬁ\,)
FAEUT:(MEPTW”mSELT)

Thus, every action is represented by the calling
function and the values of input and output arguments:

aij = (fio FAVall FAVaIRUT);
FAvallN = (av il ""’aVLNL'|L\‘);

FAVAIZUT = (av@UT,....avO%)
k

i =1.., N;jzl,..., Mi;fk ek
Every action a;; has start time tiaj and duration

dﬁ Loss of performance due to communication is de-

fined as:
a N Mi a
D%=> > dj
i=1j=1
The task of performance improvement is defined
as minimization of this value.

2. Model of a performance problem

Performance problem is defined as a set of actions
that inhibit good performance, because the actions are
not synchronized. Fig. 1 shows synchronous execution
of send and corresponding receive actions which results
in good performance. Fig. 2 and fig. 3 show cases when
send and receive actions are not synchronized thus pro-
ducing late sending and late receiving problems corre-
spondingly.

Fig. 1. Synchronous send and receive actions

© A.V. Dergunov

PAIIOEJIEKTPOHHI I KOMIT'FOTEPHI CUCTEMU, 2009, Ne 6 (40)

218

Oobuucnennsa ma npucmpoi, wio peKongizypyromscs

.-]
waiting for send]

—_—

time

Fig. 2. Problem of late sending '
waiting for receive
é %
™~

Fig. 3. Problem of late receiving

Formally performance problem is defined as:
pd,dur, TRRULES, >

<ANRULES, REC(ANFO)

p =
where:
pd — textual description of the problem;
dur — duration of the problem;

Preparation step
(performed by expert)

Performance
problem
p—

TRRULES - trace rules for actions that introduce
the problem;

ANRULES - analysis rules to recognize the prob-
lem in sequence of events in trace file;

REC — recommendations to fix the problem;

ANFO = (£, t;,d;, pri,cs;)} — description of ac-
tions that introduced the problem (where f; — the func-
tion that was called, t; — time when the function was
called, d; — duration of the function execution, pr; —

process that initiated the call, cs; — the call site repre-

sented, for example, by source file name and line num-
ber in MPI application).

3. Performance Expert system

The task of automatic detection of performance
problems in MPI applications turns out to be quite com-
plex and it is hard to solve it using formal methods.
Thus, expert methodology was proposed and imple-
mented in Performance Expert system.

The workflow of Performance Expert system is il-
lustrated in fig. 4.

Usage step
(performed by user)

,,,,,,,,,,,,,,,,,,

i
Performance Expert |
I

system |

MPI application

|
|
I
I
I
|
I
I
I
I | Knowledge Base
B
} I Trace
i ™ rules
L
I I —|
|
b
Studying and } :
description i
I
I
Lo
} I_ Analysis
| : rules
} ! —
I
|

Fig. 4. Performance Expert system

The usage of the system supposes two steps:

Preparation step. This step is performed by
expert in performance analysis of MPI applica-
tions. The task of the expert is to describe per-
formance problems that she encounters using
trace and analysis rules. The trace and analysis
rules are described using languages described
later in this paper and they constitute
Knowledge Base of the system which repre-
sents knowledge about all performance prob-

| Problems and
recommendations

,,,,,,,,,,,,,,,,,,

Changes in
the MPI
application

lems known so far. At the moment Knowledge
Base of Performance Expert contains descrip-
tion of 10 typical performance problems of
MPI applications [3].

Usage step. This step is performed by user. She
executes her MPI application under collector.
Collector uses trace rules to produce trace file
containing events that correspond to actions
executed by MPI application. Then the trace
file is examined by analyzer. Analyzer detects

Oobuucnennsa ma npucmpoi, wio peKongizypyromscs

219

performance problems in MPI application us-
ing analysis rules and generates recommenda-
tions for performance improvement. The user
is able to follow the recommendations and im-
plement the changes in her MPI application
and then repeat usage step until good perfor-
mance is achieved.

The data flow in Performance Expert system in il-

lustrated in fig. 5:

1. MPI application executes a sequence of ac-
tions. Trace rules are used to describe which
events should be generated and saved in the
trace file.

2. Analysis of the trace file is performed in two
steps:

Pr

- Ply

a. Composite events are constructed
from simple events of the trace file.
Composite event construction rules
are used to perform this step.

b. Performance problems are identified
among the constructed composite
events. Performance problem detec-
tion rules are used to perform this
step. If a problem is identified, rec-
ommendations are produced which are
related to the exact locations in source
code of MPI application (this is done
by extracting information about ac-
tions that produced the problem).

Y
time I

£
' Trace
MPI application | C—— >
A
Ay

——
E

il

Composite events

CE '

L Analysis
Trace f rules
rule [
— Composite Performance
event N .| problem Detected
L] construction " "1 detection performance
rule rule problem
Trace | p
rule Composite \\
event \‘
:\ ! construction \
- — rule) v
|| Composite Performance 1
\ event problem no 1
1] construction detection problem :
ll — rule rule \
K i

1
\

]

1

1
I

:::} Performance
problems 4

s

Recommendations are related to exact locations in source code of the MPI application

Fig. 5. Data flow in Performance Expert system

4. Tracing model

Simple events (or just events) are stored in trace
file generated by collector. Each simple event is repre-
sented as:

e=(f,et,EPval,t,d, pr,cs)

where:

f € F —function that was called;

et — type of event which describes event parame-
ters EP = (epy,....epPk) ;

EPval = (v4,...,Vk) — values of event parameters;
t — event occurrence time;

d —event duration;

pr — process which generated event;

cs — call site.

Trace rule is represented as:

trrule
a——— €,

a= <f, FAval'N , FAvaIOUT>;

e =(f,et,EPval,t,d,pr,cs);

trrule = (f, et, EPtemp)
where:
f e F —function of the rule, a call to that function
produces described event;
et — type of event which is generated as a result of
the function call;

EPtemp = {(ep;, Expr;,kind;)} — description of

generated event parameters and the way to calculate
their values, where:

ep; — event parameter;

220

Oobuucnennsa ma npucmpoi, wio peKongizypyromscs

Expr; : FAval'™ < FAval®UT v; — function
to calculate value of event parameter (using argument
values of the called function);

kind; e{in,out} — kind of that parameter (in —
calculated before function call; out — after the call);

An XML-based language was developed to declare
trace rules. Trace rules are used by collector generator
to produce wrappers of original functions. Function
wrappers are used by PIN system [4] for dynamic in-
strumentation of MPI applications (PIN is a third-party
component, a framework for dynamic instrumentation).

5. Analysis model

Composite event is represented as:
ce =(cet, CEPval, ME)

where:

cet — type of composite event which describes pa-
rameters CEP = (cepy,...,CePk) ;

CEPval =(cevy,...,cevk) — values of composite
event parameters;

ME:{ei}u{ceJ—};i =1..,N;j=1,..,.M — set of
simple and composite events that are members of this
composite event.

Composite event construction rule is:

E_ET,

CE CET

cerule

ER
S, ce = (cet, CEPval, ME);
CeR

cerule = <ET, CET, o,cet, CEPtemp, ETS>

where:
ET ={et;} — set of simple event types to select a
subset of relevant simple events:
ER ={(f;,et;, EPval;,t;,d;,pri,cs; } < E
CET ={cet;} — set of composite event types to se-
lect a subset of relevant composite events:
CER ={{cet;, CEPvalj, ME;)} CE
Let us denote:
EPV; = (f;, EPval;, tj,d;, prj,cs;);
P =EPV, x...x EPVy x CEPval; x...x CEPval,
o: P —{1,0} — Boolean condition for constructing

the composite event;
cet — type of the composite event to compose;

CEPtemp = {(cepy, Expr)} — description of the

composite event parameters and the way to calculate
their values, where:

cepy, — parameter of the composite event;

Expry : P—cev, — function to calculate pa-
rameter value;

If rule conditions are satisfied (i.e., subsets of rele-

vant events ETR and CETR of the specified types
exist and Boolean condition for their parameters o is

satisfied), then composite event ce of type cet is con-
structed, where:
CEPval = (cev,,...,cevy) — parameter values;

ME = ER UCER — set of member events.

Rule parameter ETS cET describes event types
which are common for the constructed composite event
and other event types.

Performance problem detection rules is:

ce pbrule pb;

ce = (cet, CEPval, ME);
pb = <pd,dur, REC(A'NFO)>;

pbrule = (cet, p, pd, RECtemp, Ly)

where:

cet — type of the composite event which may rep-
resent performance problem;

¢:CEPval ->{1,0}y — Boolean condition of the

problem occurrence;
pd — textual description of the problem;

RECtemp: CEPval - REC — recommendation

template (A”\”:o is the description of actions that pro-
duced the problem and it is generated by extracting in-
formation from all simple events contained in the com-
posite event recursively);

Lgyr : CEPval —dur — function to calculate dura-

tion of the problem.

Languages were developed to declare composite
event construction rules and performance problem de-
tection rules. Performance Expert system uses CLIPS
[5] expert system tool to perform the analysis, so inter-
nally these rules are converted into CLIPS rules.

6. Experiment

To investigate the implemented system an experi-
ment was conducted to analyze and improve perfor-
mance of MPI application which models heart activity
[6]. Cells of heart comprise NxN lattice and each cell is
connected to the nearest neighbors. Each cell is de-
scribed by differential equations and the application
performs numerical integration.

The lattice is split into smaller parts MxM (where
M < N) which are distributed among processes. Each
process performs the following actions in cycle:

1. Calculate values in lattice points.

2. Exchange values on boarders with neighboring

processes using MPI_Sendrecv.

After numerical integration is done, the calculated
data is sent to the main process using MPI_Gather.

Analysis of this application by Performance Expert
system in automatic mode revealed the following per-
formance problems:

e Late sending. Cumulative duration of such

problems is 28,02% of total execution time.

o FEarly receive for “many-t0-one” operation.

Cumulative duration is 24,16%.

Oobuucnennsa ma npucmpoi, wio peKongizypyromscs

221

The second problem relates to application imple-
mentation details (main processor initiates call to
MPI_Gather which is waiting until data is sent by other
processes). So, it was decided to fix the first problem.
Performance Expert system provided recommendation
to use non-blocking receive operations, so the cycle in
application was rewritten:

1. Calculate values in boarder lattice points.

2. Send values on boarders to neighboring pro-

cesses using MPI_Send.

3. Initiate receive of values on boarders from
neighboring processes using MPI_Irecv in non-
blocking mode.

4. Calculate values in the rest lattice points.

5. Wait until receiving of values is finished using
MPI_Wait.

Fig. 6 shows achieved performance improvements.

The best improvement (1,62x) was achieved for 101
processes.

6000,00

5000,00

N
A

4000,00

(in seconds)

MPI application execution time

3000,00 \
2000,00 \.
1000,00
0,00
PR=17 | PR=26 | PR=37 | PR=101
[—+—Before| 493651 | 3757.66 | 305743 | 205538
| m-After | 424994 | 297661 | 229687 | 1269.56

Fig. 6. Performance improvement results (PR denotes
processes number)

Data was collected on cluster of Lobachevsky
State University of Nizhny Novgorod (it consists of
dual-core Intel Xeon 5150 2.66 GHz cores, 4 GB

memory, Gigabit Ethernet, Windows Server 2008 x64,
Microsoft implementation of MPI library).

Conclusion

A new way to analyze performance is proposed by
automatic detection of performance problems in mes-
sage passing applications. Experiment conducted on a
real MPI application shows validity of this approach.

References

1. Toward Scalable Performance Visualization with
Jumpshot / O. Zaki [et al.] // High-Performance Compu-
ting Applications. —1999. — Vol. 13, Ne 2. — P. 277-288.

2. MPI: A Message-Passing Interface Standard
[Onexmponnwiii pecype]. — URL: http://www.mpi-
forum.org/docs/mpi-11-html/mpi-report. html (0ama
obpawenus: 28.08.2011).

3. Hepeynos, A. B. Asmomamuzayus evisaenenus
npuyur nomepu npoussooumenvrocmu MPI npoepamm na
9K3APAONCHBIX U Opyeux OOILUWUX CYynepKomMnvlomepax /
A. B. Jlepaynos // Hayunviii cepsuc ¢ cemu Humepnem:
aK3aghnoncroe oyoywee: mpyovl Meoicoynap.
cynepromnviomeprou kough. — M.: Hz0-60 MI'Y, 2011. —
C. 491-496.

4. Pin: Building Customized Program Analysis
Tools with Dynamic Instrumentation / C.-K. Luk [etal.] //
Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation, Chi-
cago, IL, 2005. — P. 190-200.

5. ocappamano, [owc. Dxcnepmmuvie cucmemol:
npunyunel paspabomxu u npospammuposanue / Jic.
Jorcappamano, I'. Patinu; nep. ¢ anen. K. A. Imuyvina. —
4-e u30. — M.: Bunvsamc, 2007. — 1152 c.

6. Mooemuposanue cepoeunoii akmusnocmu / I B.
Ocunos [u Op.] // Cynepromnvlomephvle mMexHonocuu 6
Hayke, obpazosanuu u npomviuienHocmu. — M.: H30-60
Mock. yn-ma, 2010. — C. 35-40.

IHocmynuna 6 pedaxyuio 17.02.2012

PenieH3eHT: 1-p TexXH. HayK, CT. HayK. cmiBp. B.M. Onanacenko, [acturyt xibepHeruku im. B.M. ['mymkoBa, Kuis,

VYkpaina.

HA3BAHUE
A.B. /lepzynoe

Texkcr.
Krouosi ci1oBa: Texcr.

OIIMCAHHUE U ABTOMATHYECKOE BbISIBJIEHHUE ITPOBJIEM ITPON3BO/JUTEJIBHOCTHU B MPI
MMPHJIOKEHUAX

A.B. /lepzynos

TpaﬂI/IHI/IOHHO JUTA aHaJin3a MpOU3BOAUTCIBHOCTU MPI HpI/IJ'IO)KeHI/Iﬁ HCIMOJB3YIOTCA MPOrpaMMHBIC CPEICTBA
U BU3YyaJIn3allui TPACChbl UX pa6OTBI. I[J'IS[BBIIIOJIHCHUS 3TOMU 3agaun pazpa60TaH0 HCECKOJIbKO MHCTPYMCHTOB,
IPUMEPOM SBJISICTCA \]UmpShOt. Ho amamus OPOU3BOAUTCIIBHOCTH C MCHOJb30BAHUCM TAKUX HWHCTPYMCHTOB
SIBIISICTCSL CIIOJKHOM 321):[21‘16171 n3-3a OOJIBIINX PasMEepPoOB TpacC U CIIOXKHBIX B3aPIMO,Z[CI>iCTBHI71 MMponeccoB. B pa60Te

222 Oobuucnennsa ma npucmpoi, wio peKongizypyromscs

IpEeAIOKCH HOBBII moAxoJ K aHalIn3y HNPOU3BOAUTCIIBHOCTU C HCIIOJIB30BAHMEM ABTOMATHUYCCKOI'O BLISABJICHUSA
r[p06neM MMPOU3BOAUTCIIBHOCTHU MPI HpPIJ'IO)KeHHfI. HOZ[Hp06J'IeMOI71 MIPOU3BOAUTEIIBHOCTHU ITOHUMACTCA MHOXKCECTBO
I[eflCTBI/Iﬁ, KOTOPBIC HETAaTUBHO BJIMAKOT HAa MPOU3BOAUTCIBHOCTH IPOrpaMMbI. HpO6J’I€MLI MMPONU3BOAUTCIBHOCTH
OIMMCBIBAIOTCA € UCITOJIB30BAHUCM IIPABUIT TPACCUPOBKU U aHAJIU3a.

KiroueBble ciioBa: onycaHue U BBISIBICHHIE HpO6J'IEM MIPOMU3BOAUTCIBHOCTH, MPI IMIPUIIOKCHUA.

HdeprynoB Anton BaagumupoBuu — acnmwpaHT Kadeapel MareMmaTHdeckoro oOecriedeHus OBM
Hwxeropomckoro rocyaapcrsennoro yausepcurera uM. H.W. Jlobauesckoro, Hmwxuuit Hosropon, Poccus, e-mail:
anton.dergunov@gmail.com.

