
The Monad.Reader Issue 22

by Anton Dergunov 〈anton.dergunov@gmail.com〉
and Matt Fenwick 〈mfenwick100@gmail.com〉
and Jay Vyas 〈jayunit100@gmail.com〉
and Mike Izbicki 〈mike@izbicki.me〉

August 21, 2013

Edward Z. Yang, editor.

Contents

Edward Z. Yang
Editorial 3

Anton Dergunov
Generalized Algebraic Data Types in Haskell 5

Matt Fenwick, Jay Vyas
Error Reporting Parsers: a Monad Transformer Approach 41

Mike Izbicki
Two Monoids for Approximating NP-Complete Problems 67

2

Editorial

by Edward Z. Yang 〈ezyang@cs.stanford.edu〉

Summer brings with it the release of three articles talking about three different
(and each arguably essential) ideas from the Haskell landscape. The first is an
in-depth tutorial about generalized algebraic data types, covering all of the classic
use-cases of this useful type system extension. The second is a meditation on the
design pattern of monad transformers, and how they can help the develop the
design of a parser library. The final shows how even a simple API like that of a
monoid can help code achieve dramatic speed-ups. Happy reading!

Generalized Algebraic Data Types in
Haskell

by Anton Dergunov 〈anton.dergunov@gmail.com〉

Generalized algebraic data types (GADTs) are a feature of functional program-
ming languages which generalize ordinary algebraic data types by permitting value
constructors to return specific types. This article is a tutorial about GADTs in
Haskell programming language as they are implemented by the Glasgow Haskell
Compiler (GHC) as a language extension. GADTs are widely used in practice: for
domain-specific embedded languages, for generic programming, for ensuring pro-
gram correctness and in other cases. The article describes these use cases with
small GADT programs and also describes usage of GADTs in Yampa, a Haskell
library.

Introduction

The usage of type systems is recognized as the most popular and best established
lightweight formal method for ensuring that software behaves correctly [1]. It is
used for detecting program errors, for documentation, to enforce abstraction and
in other cases. The study of type systems is an active research area and Haskell is
considered to be a kind of laboratory in which type-system extensions are designed,
implemented and applied [2]. This article is a tutorial about one such extension –
generalized algebraic data types (GADTs). The theoretical foundation for GADTs
is the notion of dependent types which is extensively described in literature on
computer science and logic [1].

GADTs are very useful in practice. Several examples of GADTs usage are
described in this article. But these examples are not new. They were taken from
many resources [3, 4, 5, 6, 7, 8, 9] and many examples are already a part of Haskell
folklore.

The Monad.Reader Issue 22

The contribution of this article is presenting a concise introductory-level tutorial
on the concept and popular use cases of GADTs. The following use cases were
described in this article:

I domain-specific embedded languages;
I generic programming;
I ensuring program correctness.

We describe why type signatures are required for functions involving GADTs;
the usage of GADTs in Yampa, a domain-specific language for functional reac-
tive programming; an alternative implementation of one of the examples without
GADTs usage. Additionally, several other Haskell extensions are covered in pass-
ing where necessary, such as type families and data kinds.

All examples in this article were tested with Glasgow Haskell Compiler, version
7.4.1.

GADTs in a Nutshell

Algebraic data types (ADTs) are declared using the data keyword:

data Test a = TI Int | TS String a

In the example above Test is called a type constructor. TI and TS are value
constructors. If a type has more than one value constructor, they are called alter-
natives : one can use any of these alternatives to create a value of that type. Each
alternative can specify zero or more components. For example, TS specifies two
components: one of them has type String and another one – type a.

We can construct values of this type this way:

ghci> let a = TI 10

ghci> :t a

a :: Test a

ghci> let b = TS "test" ’c’

ghci> :t b

b :: Test Char

Value constructors of the type Test have the following types:

ghci> :t TI

TI :: Int -> Test a

ghci> :t TS

TS :: String -> a -> Test a

Using GADT syntax we can define the Test data type as:

6

Anton Dergunov: Generalized Algebraic Data Types in Haskell

data Test a where

TI :: Int -> Test a

TS :: String -> a -> Test a

The GADTs feature is a Haskell language extension. Just like other extensions
it can be enabled in GHC by:

1. Using command line option -XGADTs.

2. Using LANGUAGE pragma in source files. This is the recommended way, be-
cause it enables this language extension per-file. This pragma must precede
the module keyword in the source file and contain the following:

{-# LANGUAGE GADTs #-}

The power of GADTs is not about syntax. In fact, the single idea of GADTs is
to allow arbitrary return types of value constructors. In this way they generalize
ordinary algebraic data types. Of course, this return type must still be an instance
of the more general data type that is defined. We can turn the Test data type
into a full-power GADT for example this way:

data Test a where

TI :: Int -> Test Int

TS :: String -> a -> Test a

We have modified the TI value constructor to return value of type Test Int

and we can test this:

ghci> :t TI 10

TI 10 :: Test Int

While creating a values with the TI results in a value of type Test Int, the
converse holds too: when a pattern-match succeeds on the TI constructor in the
example below, we can now conclude that the type of a is Int. That is to say,
pattern matching causes type refinement, which is the key feature of GADTs.

f :: Test a -> a

f (TI i) = i + 10

Examples in the following sections show some practical applications of GADTs.

7

The Monad.Reader Issue 22

Expression Evaluator

This section introduces GADTs with the canonical example of an expression eval-
uator. At first, we attempt to implement it using ordinary algebraic data types.
But as we will see, GADTs allow a more elegant implementation of the evaluator.

We start with the following type of expressions involving addition of integers:

data IntExpr = IntVal Int

| AddInt IntExpr IntExpr

IntVal value constructor is used to wrap integer literal and AddInt is used to
represent an addition of two integer expressions. An example of such expression
is:

ghci> :t AddInt (IntVal 5) (IntVal 7)

AddInt (IntVal 5) (IntVal 7) :: IntExpr

Evaluation function for such expressions is easy to write:

evaluate :: IntExpr -> Int

evaluate e = case e of

IntVal i -> i

AddInt e1 e2 -> evaluate e1 + evaluate e2

Now we extend the type of expressions to support boolean values and add some
operations on them:

data ExtExpr = IntVal Int

| BoolVal Bool

| AddInt ExtExpr ExtExpr

| IsZero ExtExpr

BoolVal value constructor wraps Boolean literal. IsZero is a unary function
that takes an integer and returns a Boolean value. We immediately notice a
problem with this type: it is possible to write incorrect expressions that type
checker will accept. For example:

ghci> :t IsZero (BoolVal True)

IsZero (BoolVal True) :: ExtExpr

ghci> :t AddInt (IntVal 5) (BoolVal True)

AddInt (IntVal 5) (BoolVal True) :: ExtExpr

8

Anton Dergunov: Generalized Algebraic Data Types in Haskell

Evaluation function for such expressions is also tricky. The result of evaluation
can be either an integer or a Boolean value. The type ExtExpr is not parametrized
by return value type, so we have to use type Either Int Bool. Furthermore,
evaluation will fail if the input expression is incorrect, so we have to use type
Maybe. Finally, the type signature of evaluate is the following:

evaluate :: ExtExpr -> Maybe (Either Int Bool)

Implementing this function is complicated. For example, processing AddInt

requires usage of a nested case:

evaluate e = case e of

AddInt e1 e2 -> case (evaluate e1, evaluate e2) of

(Just (Left i1), Just (Left i2)) -> Just $ Left $ i1 + i2

_ -> fail "AddInt takes two integers"

The conclusion is that we need to represent expressions using values of types
parametrized by expression return value type. Phantom type is a parametrized
type whose parameters do not appear on the right-hand side of its definition. One
can use them this way:

data PhantomExpr t = IntVal Int

| BoolVal Bool

| AddInt (PhantomExpr Int) (PhantomExpr Int)

| IsZero (PhantomExpr Int)

Type t in this type corresponds to the expression return value type. For example,
integer expression has type PhantomExpr Int. But this type definition alone is
still not helpful, because it is still possible to write incorrect expressions that type
checker will accept:

ghci> :t IsZero (BoolVal True)

IsZero (BoolVal True) :: PhantomExpr t

The trick is to wrap value constructors with corresponding functions:

intVal :: Int -> PhantomExpr Int

intVal = IntVal

boolVal :: Bool -> PhantomExpr Bool

boolVal = BoolVal

isZero :: PhantomExpr Int -> PhantomExpr Bool

isZero = IsZero

9

The Monad.Reader Issue 22

And now bad expressions are rejected by type checker:

ghci> :t isZero (boolVal True)

Couldn’t match expected type ‘Int’ with actual type ‘Bool’...

ghci> :t isZero (intVal 5)

isZero (intVal 5) :: PhantomExpr Bool

Ideally, we want the following type signature for evaluate method:

evaluate :: PhantomExpr t -> t

But we can’t define such function. For example, the following line produces
error “Couldn’t match type ‘t’ with ‘Int’”:

evaluate (IntVal i) = i

The reason of this error is that return type of value constructor IntVal is
Phantom t and t can be refined to any type. For example:

ghci> :t IntVal 5 :: PhantomExpr Bool

IntVal 5 :: PhantomExpr Bool :: PhantomExpr Bool

What is really needed here is to specify type signature of value constructors
exactly. In this case pattern matching in evaluate would cause type refinement
for IntVal. And this is exactly what GADTs do.

As described in the previous section, GADTs use a different syntax than ordi-
nary algebraic data types. In fact, value constructors specified by the data type
PhantomExpr can be written as the following functions:

IntVal :: Int -> PhantomExpr t

BoolVal :: Bool -> PhantomExpr t

AddInt :: PhantomExpr Int -> PhantomExpr Int -> PhantomExpr t

IsZero :: PhantomExpr Int -> PhantomExpr t

Using GADT syntax, the data type PhantomExpr type can be declared this way:

data PhantomExpr t where

IntVal :: Int -> PhantomExpr t

BoolVal :: Bool -> PhantomExpr t

AddInt :: PhantomExpr Int -> PhantomExpr Int -> PhantomExpr t

IsZero :: PhantomExpr Int -> PhantomExpr t

10

Anton Dergunov: Generalized Algebraic Data Types in Haskell

All value constructors have PhantomExpr t as their return type. As noted in
the previous section, the distinctive feature of GADTs is the ability to return
specific types in value constructors, for example PhantomExpr Int. The expression
language can be written with GADTs in this fashion:

data Expr t where

IntVal :: Int -> Expr Int

BoolVal :: Bool -> Expr Bool

AddInt :: Expr Int -> Expr Int -> Expr Int

IsZero :: Expr Int -> Expr Bool

If :: Expr Bool -> Expr t -> Expr t -> Expr t

Note that value constructors of this data type have specific return types. Now
bad expressions are rejected by the type checker:

ghci> :t IsZero (BoolVal True)

Couldn’t match expected type ‘Int’ with actual type ‘Bool’...

ghci> :t IsZero (IntVal 5)

IsZero (IntVal 5) :: Expr Bool

Note that the type of value IsZero (IntVal 5) is specific: Expr Bool.
GADTs allow to write well-defined evaluate function:

evaluate :: Expr t -> t

evaluate (IntVal i) = i

evaluate (BoolVal b) = b

evaluate (AddInt e1 e2) = evaluate e1 + evaluate e2

evaluate (IsZero e) = evaluate e == 0

evaluate (If e1 e2 e3) = if evaluate e1 then

evaluate e2 else evaluate e3

Pattern matching causes type refinement: the right-hand side of the following
expression i has type Int:

evaluate :: Expr t -> t

evaluate (IntVal i) = ...

The type of AddInt e1 e2 expression is Expr Int and the types of e1 and e2

must also be Expr Int, so we can evaluate recursively the individual expressions
and then return the sum (value of type Int).

At the end of this article, we describe one more implementation of expression
evaluator.

11

The Monad.Reader Issue 22

Generic Programming with GADTs

In datatype-generic programming, functions take a type as an argument and
change behavior depending on the structure of this type. There are several ap-
proaches to such kind of generic programming in Haskell. A paper by Hinze et
al. [10] provides an overview of these approaches. In this section, we present an
approach which uses GADTs. Ideas for this section were taken from another paper
by Hinze at al. [3].

Suppose we would like to write a function to encode data in binary form. This
function must be able to work with values of several types. Functions like this
one can be implemented using type classes. However, GADTs offer an interesting
alternative.

First we need to declare a representation type [4], a type whose values represent
types:

data Type t where

TInt :: Type Int

TChar :: Type Char

TList :: Type t -> Type [t]

This is GADT with value constructors that create a representation of the cor-
responding type. For example:

ghci> let a = TInt

ghci> :t a

a :: Type Int

ghci> let b = TList TInt

ghci> :t b

b :: Type [Int]

String type is defined in Haskell as a list of Char elements, so we can define a
value constructor for string type representation this way:

tString :: Type String

tString = TList TChar

The output of the encoding function is a list of bits where bits are represented
using:

data Bit = F | T deriving(Show)

The encoding function takes a representation of the type, the value of this type
and returns a list of bits.

12

Anton Dergunov: Generalized Algebraic Data Types in Haskell

encode :: Type t -> t -> [Bit]

encode TInt i = encodeInt i

encode TChar c = encodeChar c

encode (TList _) [] = F : []

encode (TList t) (x : xs) = T :

(encode t x) ++ encode (TList t) xs

We can test this function:

ghci> encode TInt 333

[T,F,T,...,F,F,F]

ghci> encode (TList TInt) [1,2,3]

[T,T,F,...,F,F,F]

ghci> encode tString "test"

[T,F,F,...,F,F,F]

If we pair the representation type and the value together, we get a universal data
type, the type Dynamic (this code requires using ExistentialQuantification

extension):

data Dynamic = forall t. Dyn (Type t) t

Above we have defined an existential data type which can also be represented as
a GADT:

data Dynamic where

Dyn :: Type t -> t -> Dynamic

Now we can declare a variant of encode function which gets a Dynamic type
value as input:

encode’ :: Dynamic -> [Bit]

encode’ (Dyn t v) = encode t v

The following session illustrates the usage of this type:

ghci> let c = Dyn (TList TInt) [5,4,3]

ghci> :t c

c :: Dynamic

ghci> encode’ c

[T,T,F,...,F,F,F]

We can now define heterogeneous lists using the Dynamic type:

13

The Monad.Reader Issue 22

ghci> let d = [Dyn TInt 10, Dyn TString "test"]

ghci> :t d

d :: [Dynamic]

However, we can’t make this list a Dynamic value itself. To fix this problem, we
need to extend the representation type, adding a value constructor for the Dynamic
data type.

data Type t where

...

TDyn :: Type Dynamic

We also need to update encode function to handle the Dynamic data type:

encode :: Type t -> t -> [Bit]

...

encode TDyn (Dyn t v) = encode t v

Now we can represent a list of Dynamic values as a Dynamic value itself and
encode it:

ghci> let d = [Dyn TInt 10, Dyn tString "test"]

ghci> :t d

d :: [Dynamic]

ghci> let e = Dyn (TList TDyn) d

ghci> :t e

e :: Dynamic

ghic> encode’ e

[T,F,T,...,F,F,F]

The Dynamic data type is useful for communication with the environment when
the actual type of the data is not known in advance. In this case a type cast is
required to get useful data. A simple way to implement a type cast from Dynamic

data type to an integer is the following:

castInt :: Dynamic -> Maybe Int

castInt (Dyn TInt i) = Just i

castInt (Dyn _ _) = Nothing

There is a more generic solution [3] for this problem that works for all types,
not just integer, but it is out of scope for this article.

While the presented approach is an important use case of GADTs, the disadvan-
tage of this approach is that we have to extend the representation type whenever
we define a new data type.

14

Anton Dergunov: Generalized Algebraic Data Types in Haskell

Proving Correctness of List Operations

An important role of type systems is to ensure that data is manipulated in appro-
priate ways (for example, to ensure we pass a list to head function). But types
can be used to express more sophisticated properties. For example, we can define
a type of lists of a particular length and then define a headSafe function that
only accepts non-empty lists. The idea described in this section is to use types
to express correctness properties and then use type checker of the programming
language to ensure that we can express only those programs that have the desired
properties. This idea was developed in Ωmega system [11, 12]. In this section, we
use GADTs in the Haskell programming language to prove the correctness of list
operations; in the next section, we describe how to use GADTs to prove correctness
of the insertion operation in red-black trees.

Lists can be represented using the following algebraic data type:

data List t = Nil | Cons t (List t)

or using GADT syntax as:

data List t where

Nil :: List t

Cons :: t -> List t -> List t

Now head function can be implemented this way:

listHead :: List t -> t

listHead (Cons a _) = a

listHead Nil = error "list is empty"

The disadvantage of this function is that it can fail: it fails when a list is
empty and succeeds otherwise. To address this problem we define a type of non-
empty lists. First we define two empty data types (this requires EmptyDataDecls

extension):

data Empty

data NonEmpty

Now we define a safe list GADT:

data SafeList t f where

Nil :: SafeList t Empty

Cons :: t -> SafeList t f -> SafeList t NonEmpty

15

The Monad.Reader Issue 22

Parameter f takes type Empty when the list is empty and NonEmpty otherwise.
The function headSafe is a safe version of listHead function that only accepts
non-empty lists as parameter.

headSafe :: SafeList t NonEmpty -> t

headSafe (Cons t _) = t

For example:

ghci> headSafe Nil

Couldn’t match expected type ‘NonEmpty’ with actual type ‘Empty’

ghci> headSafe $ Cons 1 $ Cons 2 $ Cons 3 Nil

1

However, the implementation of a function to create a list containing an element
repeated a given number of times using SafeList data type is problematic: it is
not possible to determine return value type of this function.

repeatElem :: a -> Int -> SafeList a ???

repeatElem a 0 = Nil

repeatElem a n = Cons a (repeatElem a (n-1))

The problem is that empty and non-empty lists have completely different types.
To fix this problem we can slightly relax Cons value constructor:

data SafeList t f where

Nil :: SafeList t Empty

Cons :: t -> SafeList t f -> SafeList t f’

Now SafeList t Empty is a type of possibly empty lists, for example:

ghci> :t Nil

Nil :: SafeList t Empty

ghci> :t Cons ’a’ Nil

Cons ’a’ Nil :: SafeList Char f’

ghci> :t Cons ’a’ Nil :: SafeList Char Empty

Cons ’a’ Nil :: SafeList Char Empty :: SafeList Char Empty

ghci> :t Cons ’a’ Nil :: SafeList Char NonEmpty

Cons ’a’ Nil :: SafeList Char NonEmpty :: SafeList Char NonEmpty

And we can define repeatElem as a function returning possibly empty lists:

16

Anton Dergunov: Generalized Algebraic Data Types in Haskell

repeatElem :: a -> Int -> SafeList a Empty

repeatElem a 0 = Nil

repeatElem a n = Cons a (repeatElem a (n-1))

It’s worth noting that with the current data type definition, a term Cons ’a’ Nil

can even be given the type SafeList Char Int. To fix this problem, we need to
somehow give the Empty and NonEmpty types the same kind. This is discussed
later for Nat data type.

Regardless, SafeList data type does not have enough static information to
prove stronger list length invariants for many list functions. For example, for the
concatenation function we need to show that length of the concatenated list is a
sum of source lists lengths. It is not enough to just know if a list is empty or not:
we need to encode the length of a list in its type.

The classical way to encode numbers at the type level is Peano numbers:

data Zero

data Succ n

Zero is encoded as Zero, one – as Succ Zero, two – as Succ (Succ Zero) and
so on. Now the list data type is defined as:

data List a n where

Nil :: List a Zero

Cons :: a -> List a n -> List a (Succ n)

Function headSafe can be defined as:

headSafe :: List t (Succ n) -> t

headSafe (Cons t _) = t

We can also show that the safe map function does not change the length of a
list:

mapSafe :: (a -> b) -> List a n -> List b n

mapSafe _ Nil = Nil

mapSafe f (Cons x xs) = Cons (f x) (mapSafe f xs)

To implement the concatenation function, we need a type-level function for
addition of Peano numbers. A natural way to implement such function is to use
type families (which in context of this tutorial can be understood as type-level
functions). First, we need to declare type family Plus (this requires TypeFamilies
extension):

17

The Monad.Reader Issue 22

type family Plus a b

Then, we need to declare type instances that implement addition of Peano num-
bers by induction:

type instance Plus Zero n = n

type instance Plus (Succ m) n = Succ (Plus m n)

The type family Plus that we have just defined can be used in the concatenation
function signature:

concatenate :: List a m -> List a n -> List a (Plus m n)

concatenate Nil ys = ys

concatenate (Cons x xs) ys = Cons x (concatenate xs ys)

As mentioned previously, Succ has a type parameter of kind *, so it possible to
write nonsensical terms like Succ Int which will be accepted by the type checker.
This problem can be addressed using a new kind. Just as types classify values,
kinds classify types. We can declare the following data type:

data Nat = Zero | Succ Nat

values

types

kinds

Succ (Succ Zero)

Nat

Original data type

Promoted kind

and example value

and example type

'Succ ('Succ 'Zero)

'Nat

Figure 1: Promotion of a data type to a kind.

Here Nat is a type; Zero and Succ are value constructors. But due to promo-
tion [13] Nat also becomes a kind; Zero and Succ also become types (see Figure 1).
Where necessary, a quote must be used to resolve ambiguity. For example, ’Succ
refers to a type, not a value constructor. So, type-level representation of the num-
ber two can be written as:

type T = ’Succ (’Succ ’Zero)

Quotes can be omitted in this case, because there is no ambiguity:

18

Anton Dergunov: Generalized Algebraic Data Types in Haskell

type T2 = Succ (Succ Zero)

As a result, type checker now rejects wrong terms like Succ Int.
The definition of the list data type can also be improved now to clearly spec-

ify that the type of its second parameter has kind Nat (this requires DataKinds

extension):

data List a (n::Nat) where

Nil :: List a ’Zero

Cons :: a -> List a n -> List a (’Succ n)

After the changes that we have made to the definition of the List data type,
the implementation of the repeatElem function becomes more involved, because
now we can’t yet write its return type:

repeatElem :: a -> Int -> List a ???

repeatElem a 0 = Nil

repeatElem a n = Cons a (repeatElem a (n-1))

On the one hand, the count parameter must be passed as a value to populate
the list at run-time. On the other hand, we need a type-level representation of
the same number for List type. Haskell enforces a phase separation between
run-time values and compile-time types. This causes a problem with the type
signature of the function repeatElem: there is no direct way to specify a type-
level representation of list’s count in the return value type of the function which
will match the count passed in as a value.

The solution to this puzzle is the use of singleton types. Singleton types are types
that contain only one value (except, of course, the ⊥ value, which is a member of
every type in Haskell).

The singleton for Peano numbers type can be expressed using the following
GADT:

data NatSing (n::Nat) where

ZeroSing :: NatSing ’Zero

SuccSing :: NatSing n -> NatSing (’Succ n)

The constructors of the singleton NatSing mirror those of the kind Nat. As a
result, every type of kind Nat corresponds to exactly one value (except ⊥ value)
of the singleton data type where parameter n has exactly this type (see Figure 2).
For example:

19

The Monad.Reader Issue 22

NatSing ('Succ ('Succ 'Zero))

SuccSing (SuccSing ZeroSing)

Singleton type indexed by Peano number type
and a single value of this type

values

types

kinds

Peano numbers kind
and example Peano number type

'Succ ('Succ 'Zero)

'Nat

Figure 2: Singleton type for Peano numbers.

ghci> :t ZeroSing

ZeroSing :: NatSing ’Zero

ghci> :t SuccSing $ SuccSing ZeroSing

SuccSing $ SuccSing ZeroSing :: NatSing (’Succ (’Succ ’Zero))

Now function repeatElem can be defined this way:

repeatElem :: a -> NatSing n -> List a n

repeatElem _ ZeroSing = Nil

repeatElem x (SuccSing n) = Cons x (repeatElem x n)

In a function returning an element by index in the list we need to make sure
that the index does not exceed the list length. This requires a type-level function
to compute whether one number is less than the other. We define the following
type family and instances (the TypeOperators extension is required to be able to
define :< operation for types):

type family (m::Nat) :< (n::Nat) :: Bool

type instance m :< ’Zero = ’False

type instance ’Zero :< (’Succ n) = ’True

type instance (’Succ m) :< (’Succ n) = m :< n

This type-level function is implemented using induction. It returns promoted
type ’True of kind Bool when first number is less than the second one.

Now the function can be defined this way:

nthElem :: (n :< m) ~ ’True => List a m -> NatSing n -> a

nthElem (Cons x _) ZeroSing = x

nthElem (Cons _ xs) (SuccSing n) = nthElem xs n

The tilde operation is an equality constraint. It asserts that two types are the
same in the context. Thus, is it only possible to use this function when the index
does not exceed the list length.

20

Anton Dergunov: Generalized Algebraic Data Types in Haskell

We have shown that GADTs provide a way to use Haskell type checker to verify
correctness of list operations. To do this, we need to specify necessary properties
in the data type. The set of such properties is motivated by the operations that
we want to implement. At first we only made a distinction between empty and
non-empty lists. This was suitable for the listHead function. To implement
repeatElem, concatenate and other functions we extended the list data type
with the count of elements that it contains.

Proving Correctness of Red-Black Tree Insert
Operation

This section describes another, more involved example of using GADTs to verify
correctness of programs: proving correctness of insertion in red-black trees. A
red-black tree is a binary search tree where every node has either red or black
color and which additionally satisfies several invariants which we describe later.
The presense of invariants guarantees that the tree is balanced and thus searching
takes O(log n) time (where n is total number of elements). The insertion operation
must maintain these properties, so it is interesting to see how GADTs can be used
to enforse these invariants.

We use the implementation of red-black trees described by Okasaki [6]. The
source code for the verified red-black tree was originally written by Stephanie
Weirich [7] for a university course.

data Color = R | B

data Node a = E | N Color (Node a) a (Node a)

type Tree a = Node a

N is a value constructor of a regular node and E is a value constructor for a leaf
node. As in all binary search trees, for a particular node N c l x r values less
than x are stored in left sub-tree (in l) and values greater than x are stored in
right sub-tree (in r). Membership function implements a recursive search:

member :: Ord a => a -> Tree a -> Bool

member _ E = False

member x (N _ l a r)

| x < a = member x l

| x > a = member x r

| otherwise = True

Additionally red-black tree satisfies the following invariants:

21

The Monad.Reader Issue 22

1. The root is black.

2. Every leaf is black.

3. Red nodes have black children.

4. For each node, all paths from that node to the leaf node contain the same
number of black nodes. This number of black nodes is called the black height
of a node.

These invariants guarantee that tree is balanced. Indeed, the longest path from
the root node (containing alternating red-black nodes) can only be twice as long
as the shortest path (containing only black nodes). Thus basic operations (such
as insertion and search) take O(log n) time in the worst case.

Insertion operation for red-black trees has the following structure:

insert :: Ord a => Tree a -> a -> Tree a

insert t v = blacken (insertInternal t v) where

insertInternal n@(N c l a r) x

| x < a = leftBalance (N c (insertInternal l x) a r)

| x > a = rightBalance (N c l a (insertInternal r x))

| otherwise = n

insertInternal E x = N R E x E

blacken (N _ l x r) = N B l x r

It has the same structure as insertion operation for regular binary search trees
which is implemented by recursive descent (down to leaf nodes) until a suitable
location for insertion is found. But additionally it must keep the invariants, so
there are the following differences:

I The node is inserted with red color. This allows to maintain the 4th invariant,
because the black height is not changed.

I To maintain the 1st invariant we call blacken at the end of insertion. Again,
the 4th invariant remains valid.

I To maintain the 3rd invariant we call leftBalance and rightBalance.

Figure 3 shows 2 possible cases when the 3rd invariant is violated after insertion
in the left branch of the node. To repair this invariant the tree must be restructured
as shown on the figure. The following code uses pattern matching to implement
the restructuring, otherwise the function returns the sub-tree as is:

22

Anton Dergunov: Generalized Algebraic Data Types in Haskell

x z

a b c d

y

x

z

a b

c

d
y x

z

a

b c

d

y

red node

black node

Restructured tree

1st case of invariant violation 2nd case of invariant violation

Figure 3: Possible cases of 3rd invariant violation after insertion in the left branch
of the node.

leftBalance :: Node a -> Node a

leftBalance (N B (N R (N R a x b) y c) z d) =

N R (N B a x b) y (N B c z d)

leftBalance (N B (N R a x (N R b y c)) z d) =

N R (N B a x b) y (N B c z d)

leftBalance n = n

The function rightBalance is similar. Complete source code is in Appendix A.

Proving that the 4th invariant is maintained by insert

To show that the 4th invariant is maintained by the insertion operation we need
to add black height as a parameter of the Node data type.

First we define Peano numbers in same way as before:

data Nat = Zero | Succ Nat

Then we turn Node into a GADT with a black height parameter:

data Node a (bh::Nat) where

E :: Node a ’Zero

N :: Color -> Node a bh -> a -> Node a bh -> Node a ???

The leaf node has black height 0. The definition of internal nodes requires that
both children have the same black height. The black height of the node itself must
be conditionally incremented based on its color. This is implemented using the
following type family which computes the new height based on the color of the
node and black height of its children. Both parameters are represented as types
(of Color and Nat kinds correspondingly). This code requires TypeFamilies and
DataKinds extensions.

23

The Monad.Reader Issue 22

type family IncBlackHeight (c::Color) (bh::Nat) :: Nat

type instance IncBlackHeight R bh = bh

type instance IncBlackHeight B bh = Succ bh

Now we see that a color must be passed as a type (for IncBlackHeight type
family) and as a value (to the value constructor). Similarly as before, we need to
use a singleton type as a bridge:

data ColorSingleton (c::Color) where

SR :: ColorSingleton R

SB :: ColorSingleton B

The value of this singleton type is passed as a parameter to the node value
constructor and the color type is used for type family:

data Node a (bh::Nat) where

E :: Node a ’Zero

N :: ColorSingleton c -> Node a bh -> a

-> Node a bh -> Node a (IncBlackHeight c bh)

After we have added a new parameter for the Node data type, it is an error to
write:

type Tree a = Node a bh

since normally when creating a new type in Haskell, every type variable that
appears on the right-hand side of the definition must also appear on its left-hand
side. One solution to this problem is usage of existential types (this definition
requires extension RankNTypes):

data Tree a = forall bh. Root (Node a bh)

It is also possible to do this with a GADT:

data Tree a where

Root :: Node a bh -> Tree a

The implementation of insertion operation never violates the 4th invariant, so
the remaining changes are adjustments of type annotations and so on. Complete
source code is in Appendix B.

24

Anton Dergunov: Generalized Algebraic Data Types in Haskell

Proving that the 3rd invariant is maintained by insert

Proving the 3rd invariant is more involved. First, we need to specify valid colors
for a node on the type level. This can be done using type families as before or
using type classes. We choose the latter and define a type class with 3 parameters
corresponding to color of the parent and colors of the child nodes (this code requires
MultiParamTypeClasses extension):

class ValidColors (parent::Color) (child1::Color) (child2::Color)

We do not need to define any functions in this type class, because our aim is
just to declare instances with valid colors (this code requires FlexibleInstances
extension):

instance ValidColors R B B

instance ValidColors B c1 c2

The allowed nodes are:
I red nodes with black child nodes;
I black nodes with child nodes of any color.

We need to add color type as a parameter to the Node data type and restrict it
to have only correctly-colored nodes using the ValidColors type class:

data Node a (bh::Nat) (c::Color) where

E :: Node a ’Zero B

N :: ValidColors c c1 c1 => ColorSingleton c -> Node a bh c1

-> a -> Node a bh c2 -> Node a (IncBlackHeight c bh) c

With this change we also statically ensure the 2nd invariant: leaf nodes have
black color.

We also need to update the definition of the Tree data type to specify that root
node has black color (this way also ensuring the 1st invariant):

data Tree a where

Root :: Node a bh B -> Tree a

The implementation of the insertion operation can temporarily invalidate the
3rd invariant (see Figure 3), so during insertion we are not able to represent the
tree using this data type. Thus, we need to declare a data type similar to Node,
but without the restriction on node colors:

data IntNode a (n::Nat) where

IntNode :: ColorSingleton c -> Node a n c1 -> a

-> Node a n c2 -> IntNode a (IncBlackHeight c n)

25

The Monad.Reader Issue 22

As before, we need to make changes in type annotations of the functions imple-
menting insert operation. We also need to change the leftBalance function type
signature this way:

leftBalance :: ColorSingleton c -> IntNode a n -> a

-> Node a n c’ -> IntNode a (IncBlackHeight c n)

Earlier, we passed the whole node as a parameter. But we can’t do this after the
Node data type was modified: the 3rd invariant could be violated due to insertion
in the left branch of the node. So, we pass all parameters of the parameters of the
node and left child is represented using IntNode data type.

Previous cases should be rewritten using new types:

leftBalance SB (IntNode SR (N SR a x b) y c) z d =

IntNode SR (N SB a x b) y (N SB c z d)

leftBalance SB (IntNode SR a x (N SR b y c)) z d =

IntNode SR (N SB a x b) y (N SB c z d)

However, now we can’t write the same catch-all case as before:

leftBalance c (IntNode c1 a x b) d n2 =

IntNode c (N c1 a x b) d n2

This case does not type-check with the following error:

Could not deduce (ValidColors c1 c2 c2) ...

The reason is that the type of the left node is IntNode, so even though we have
previously balanced the left sub-tree, technically this is not reflected in the type.
We need to explicitly match against the correct cases and reconstruct the node.
First, we match against the black nodes where children can have any color:

leftBalance c (IntNode SB a x b) z d = IntNode c (N SB a x b) z d

Red nodes must have black children:

leftBalance c (IntNode SR a@(N SB _ _ _) x b@(N SB _ _ _)) z d =

IntNode c (N SR a x b) z d

leftBalance c (IntNode SR E x E) z d = IntNode c (N SR E x E) z d

Unfortunately, we haven’t yet listed all cases. We know that the following cases
can’t happen, but we do not have enough information in the type to omit them.
We can skip them, but this means producing “Non-exhaustive patterns” exception
for these impossible cases. To workaround the corresponding warning message
from Haskell compiler we are using the error function:

26

Anton Dergunov: Generalized Algebraic Data Types in Haskell

leftBalance _ (IntNode SR (N SR _ _ _) _ _) _ _ =

error "can’t happen"

leftBalance _ (IntNode SR _ _ (N SR _ _ _)) _ _ =

error "can’t happen"

However, the previous code illustrates a general problem with proofs. In fact,
in Haskell ⊥ (bottom) is a member of every type. As a result, we can write:

concatenate :: List a m -> List a n -> List a (Plus m n)

concatenate = undefined

This code type checks, but, of course, the implementation of the concatenate

function does not meet our expectations.
At this point, we have specified all cases of the leftBalance function (note that

the case of one regular node and one leaf node is not valid, because these nodes
must have different black heights; so, we do not need to take care of this case).
The complete source code of this example is in Appendix C.

To sum up, we have implemented and verified the insertion operation on red-
black trees. By using GADTs to express invariants for this data type, we guarantee
that the tree is balanced and that searching in such tree will take O(log n) time
(where n is total number of elements in the tree).

Type Signatures for Functions Involving GADTs

Type inference for programs with GADTs is out of scope for this article. But
when writing programs we are faced with a problem: typically Haskell functions
do not require writing type signatures, but many functions involving GADTs do
not compile without specifying type signatures explicitly, as the Haskell compiler
can not automatically infer the type. This section describes the reasons of this
situation.

Hindley-Milner (HM) is the classic type inference method [14]. One of the most
important properties of HM is ability to always deduce the most general type
(principle type) of every term.

However, GADTs pose a difficult problem for type inference, because programs
with GADTs lose principle type property [15]. For example, consider the following
GADT program:

data Test t where

TInt :: Int -> Test Int

TString :: String -> Test String

f (TString s) = s

27

The Monad.Reader Issue 22

There are two possible principal types of the function f, but neither of them is
an instance of the other:

f :: Test t -> String

f :: Test t -> t

Also without type signature the following function fails to typecheck:

f’ (TString s) = s

f’ (TInt i) = i

Adding type signature fixes the problem:

f’ :: Test t -> t

The paper by Schrijvers et al. [15] provides more information on type inference
for programs with GADTs.

Usage of GADTs in Yampa

Yampa [16] is a domain-specific language for functional reactive programming
(FRP). FRP is a programming paradigm which involves expressing data flows using
functional programming languages. Based on the information from the paper by
Nilsson [9], this section describes how GADTs were used to improve performance
of Yampa programs.

The signal function is a central abstraction in Yampa. It represents a simple
synchronous process that maps an input signal to an output signal (see Figure 4).
The type of the signal function is SF a b and it can be constructed from an
ordinary function using the following function:

arr :: (a -> b) -> SF a b

SF a b
stream of a's stream of b's

Figure 4: Signal function SF a b.

The following function provides a composition of signal functions (as shown in
Figure 5):

(>>>) :: SF a b -> SF b c -> SF a c

28

Anton Dergunov: Generalized Algebraic Data Types in Haskell

SF a b SF b c

SF a c = SF a b >>> SF b c

stream of a's stream of c's

Figure 5: Composition of signal functions.

There is a natural requirement to eliminate the overhead of composition with
identity function:

arr id >>> f = f

f >>> arr id = f

As an attempt to implement this in Yampa we can imagine introducing a special
value constructor to represent identity signal functions:

data SF a b = ...

| SFId -- Represents arr id.

But the return type of this value constructor is still SF a b. We can use the
same trick as before with phantom types. We can define a function to construct
the value and restrict the type to SF a a:

identity :: SF a a

identity = SFId

Now we can try to use the new value constructor in the definition of the function
>>> this way:

(>>>) :: SF a b -> SF b c -> SF a c

...

SFId >>> sf = sf

sf >>> SFId = sf

But this code does not type check, because when we pattern match using SFId

value constructor, the type is still SF a b, not SF a a. We have already seen this
problem before when we attempted to use phantom types for expression evaluation.
The solution is to use GADT to represent the signal function:

data SF a b where

...

SFId :: SF a a

29

The Monad.Reader Issue 22

Benchmark TS[s] TG[s]

1 0.41 0.00
2 0.74 0.22
3 0.45 0.22
4 1.29 0.07
5 1.95 0.08
6 1.48 0.69
7 2.85 0.72

Table 1: Performance improvements enabled by GADTs in Yampa programs

After this change the function >>> as presented above must type check due to
type refinement in pattern matching.

There are other performance improvements that are enabled by GADTs in
Yampa [9]. The results of performance improvements described by the paper by
Nilsson [9] are shown in the table. The table shows execution time of several bench-
marks using initial simply-optimized implementation (TS) and the implementation
with GADT-based optimizations (TG). In addition to performance improvements,
GADTs allowed the authors of the paper to write a more concise and cleaner API
without the need of pre-composed signal functions (which were defined in Yampa
only for performance reasons).

GADTless Programming

Previous sections should convince the reader that GADTs are a very powerful and
helpful extension of the language. However, there are cases when this extension
is not available (for example, this feature is not implemented in Hugs compiler).
For this reason, there is an interest in replacing them with simpler features while
not substantially changing programs and their meanings. This is called GADTless
programming [17].

Earlier we discussed implementation of expression evaluator using GADT. It can
also be implemented using type classes [8]:

class Expr e where

intVal :: Int -> e Int

boolVal :: Bool -> e Bool

add :: e Int -> e Int -> e Int

isZero :: e Int -> e Bool

if’ :: e Bool -> e t -> e t -> e t

30

Anton Dergunov: Generalized Algebraic Data Types in Haskell

Bad expressions are still rejected by the type checker:

ghci> :t isZero $ boolVal True

Couldn’t match expected type ‘Int’ with actual type ‘Bool’...

ghci> :t isZero $ intVal 5

isZero $ intVal 5 :: Expr e => e Bool

Evaluation is implemented by defining a helper data type as an instance of
Expr e type class:

newtype Eval a = Eval {runEval :: a}

instance Expr Eval where

intVal x = Eval x

boolVal x = Eval x

add x y = Eval $ runEval x + runEval y

isZero x = Eval $ runEval x == 0

if’ x y z = if (runEval x) then y else z

t = runEval $ isZero $ intVal 5

Printing expressions is implemented in a similar way:

newtype Print a = Print {printExpr :: String}

instance Expr Print where

intVal x = Print $ show x

boolVal x = Print $ show x

add x y = Print $ printExpr x ++ "+" ++ printExpr y

isZero x = Print $ "isZero(" ++ printExpr x ++ ")"

if’ x y z = Print $ "if (" ++ printExpr x ++ ") then (" ++

printExpr y ++ ") else (" ++ printExpr z ++ ")"

t’ = printExpr $ isZero $ intVal 5

Detailed discussion of GADTless programming and comparing advantages of
these approaches is out of scope of this paper. However, it is worth pointing
out that it is much easier to do deep pattern matching with data types (including
GADTs) than with class instances. For example, earlier we have used deep pattern
matching in leftBalance function:

31

The Monad.Reader Issue 22

leftBalance :: Node a -> Node a

leftBalance (N B (N R (N R a x b) y c) z d) =

N R (N B a x b) y (N B c z d)

leftBalance (N B (N R a x (N R b y c)) z d) =

N R (N B a x b) y (N B c z d)

leftBalance n = n

Another important aspect is that GADTs, just like all data types in Haskell, are
closed: once they are declared, they can not be extended in the rest of the program.
This issue is called the expression problem [18]. Wouter Swierstra describes a
technique to solve this problem in the article “Data types à la carte” [19].

In contrast, type class instances are open. For example, we could split Expr e

type class into two separate type classes (this way we improve modularity):

class ArithExpr e where

intVal :: Int -> e Int

add :: e Int -> e Int -> e Int

isZero :: e Int -> e Bool

class LogExpr e where

boolVal :: Bool -> e Bool

if’ :: e Bool -> e t -> e t -> e t

class (ArithExpr e, LogExpr e) => Expr e

Conclusion

This article has demonstrated the use of GADTs in practice:

I We have shown that GADTs are useful for domain-specific embedded lan-
guages: they allow to statically type-check valid expressions.

I GADTs allow to express datatype-generic functions using representation
types and universal data types.

I GADTs can be used as a lightweight way to ensure program correctness.
They allow to encode domain-specific invariants in data type. The program-
mer can decide which parts of her or his program require verification and add
only relevant invariants. Haskell enforces a phase separation between run-
time values and compile-time types. Invariants are expressed using types, so
there is no additional run-time cost. But on the other hand, we have shown
the issue with the ⊥ value.

32

Anton Dergunov: Generalized Algebraic Data Types in Haskell

I We have also described how GADTs were used to improve performance of
Yampa programs.

Acknowledgments

This tutorial article was inspired by Simon Peyton-Jones talk at LASER 2012
summer school. The source code for the red-black tree example was originally
written by Stephanie Weirich for a university course. The author is thankful to
have ability to use this great example of GADTs usage in this tutorial. Also
the author would like to thank Simon Peyton-Jones, Owen Stephens, Alexander
Batischev, Denis Kasak, Mann mit Hut, Alexei Alexandrov, Serge Le Huitouze,
Eric Mullen, Egor Kazachkov and Vadim Zaytsev for the review of the article draft
and providing valuable comments.

References

[1] Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge,
MA, USA (2002).

[2] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of
Haskell: being lazy with class. In Proceedings of the third ACM SIGPLAN con-
ference on History of programming languages, pages 12–1–12–55. HOPL III, ACM,
New York, NY, USA (2007). http://doi.acm.org/10.1145/1238844.1238856.

[3] R. Hinze et al. Fun with phantom types. The fun of programming, pages 245–262
(2003).

[4] Stephanie Weirich. RepLib: a library for derivable type classes. In Proceedings
of the 2006 ACM SIGPLAN workshop on Haskell, pages 1–12. Haskell ’06, ACM,
New York, NY, USA (2006). http://doi.acm.org/10.1145/1159842.1159844.

[5] Richard A. Eisenberg and Stephanie Weirich. Dependently typed programming with
singletons. In Proceedings of the 2012 symposium on Haskell symposium, pages
117–130. Haskell ’12, ACM, New York, NY, USA (2012). http://doi.acm.org/

10.1145/2364506.2364522.

[6] Chris Okasaki. Red-black trees in a functional setting. Journal of Functional
Programming, 9(4):pages 471–477 (July 1999). http://dx.doi.org/10.1017/

S0956796899003494.

[7] Stephanie Weirich. Dependently-typed programming in GHC. In Proceedings of
the 11th international conference on Functional and Logic Programming, pages 3–
3. FLOPS’12, Springer-Verlag, Berlin, Heidelberg (2012). http://dx.doi.org/10.
1007/978-3-642-29822-6_3.

33

http://doi.acm.org/10.1145/1238844.1238856
http://doi.acm.org/10.1145/1159842.1159844
http://doi.acm.org/10.1145/2364506.2364522
http://doi.acm.org/10.1145/2364506.2364522
http://dx.doi.org/10.1017/S0956796899003494
http://dx.doi.org/10.1017/S0956796899003494
http://dx.doi.org/10.1007/978-3-642-29822-6_3
http://dx.doi.org/10.1007/978-3-642-29822-6_3

The Monad.Reader Issue 22

[8] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally tagless, par-
tially evaluated: Tagless staged interpreters for simpler typed languages. Jour-
nal of Functional Programming, 19(5):pages 509–543 (September 2009). http:

//dx.doi.org/10.1017/S0956796809007205.

[9] Henrik Nilsson. Dynamic optimization for functional reactive programming using
generalized algebraic data types. In Proceedings of the tenth ACM SIGPLAN
international conference on Functional programming, pages 54–65. ICFP ’05, ACM,
New York, NY, USA (2005). http://doi.acm.org/10.1145/1086365.1086374.

[10] Ralf Hinze, Johan Jeuring, and Andres Löh. Comparing approaches to generic
programming in Haskell. In Proceedings of the 2006 international conference on
Datatype-generic programming, pages 72–149. SSDGP’06, Springer-Verlag, Berlin,
Heidelberg (2007). http://dl.acm.org/citation.cfm?id=1782894.1782896.

[11] Tim Sheard. Putting Curry-Howard to work. In Proceedings of the 2005 ACM
SIGPLAN workshop on Haskell, pages 74–85. Haskell ’05, ACM, New York, NY,
USA (2005). http://doi.acm.org/10.1145/1088348.1088356.

[12] Tim Sheard and Nathan Linger. Programming in Omega. In Zoltán Horváth,
Rinus Plasmeijer, Anna Soós, and Viktória Zsók (editors), CEFP, volume 5161
of Lecture Notes in Computer Science, pages 158–227. Springer (2007). http:

//dx.doi.org/10.1007/978-3-540-88059-2_5.

[13] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dim-
itrios Vytiniotis, and José Pedro Magalhães. Giving Haskell a promotion. In
Proceedings of the 8th ACM SIGPLAN workshop on Types in language design
and implementation, pages 53–66. TLDI ’12, ACM, New York, NY, USA (2012).
http://doi.acm.org/10.1145/2103786.2103795.

[14] Luca Cardelli. Basic polymorphic typechecking. Sci. Comput. Program., 8(2):pages
147–172 (April 1987). http://dx.doi.org/10.1016/0167-6423(87)90019-0.

[15] Tom Schrijvers, Simon Peyton-Jones, Martin Sulzmann, and Dimitrios Vytiniotis.
Complete and decidable type inference for GADTs. In Proceedings of the 14th
ACM SIGPLAN international conference on Functional programming, pages 341–
352. ICFP ’09, ACM, New York, NY, USA (2009). http://doi.acm.org/10.1145/
1596550.1596599.

[16] Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive pro-
gramming, continued. In Proceedings of the 2002 ACM SIGPLAN workshop on
Haskell, pages 51–64. Haskell ’02, ACM, New York, NY, USA (2002). http:

//doi.acm.org/10.1145/581690.581695.

[17] Martin Sulzmann and Meng Wang. GADTless programming in Haskell 98 (2006).
https://www.cs.ox.ac.uk/files/3060/gadtless.pdf.

34

http://dx.doi.org/10.1017/S0956796809007205
http://dx.doi.org/10.1017/S0956796809007205
http://doi.acm.org/10.1145/1086365.1086374
http://dl.acm.org/citation.cfm?id=1782894.1782896
http://doi.acm.org/10.1145/1088348.1088356
http://dx.doi.org/10.1007/978-3-540-88059-2_5
http://dx.doi.org/10.1007/978-3-540-88059-2_5
http://doi.acm.org/10.1145/2103786.2103795
http://dx.doi.org/10.1016/0167-6423(87)90019-0
http://doi.acm.org/10.1145/1596550.1596599
http://doi.acm.org/10.1145/1596550.1596599
http://doi.acm.org/10.1145/581690.581695
http://doi.acm.org/10.1145/581690.581695
https://www.cs.ox.ac.uk/files/3060/gadtless.pdf

Anton Dergunov: Generalized Algebraic Data Types in Haskell

[18] Philip Wadler. The expression problem. http://homepages.inf.ed.ac.uk/

wadler/papers/expression/expression.txt.

[19] Wouter Swierstra. Data types à la carte. Journal of Functional Pro-
gramming, 18(4):pages 423–436 (July 2008). http://dx.doi.org/10.1017/

S0956796808006758.

Appendix A. Original Red-Black Tree Source Code

module RBT1 where

data Color = R | B

data Node a = E | N Color (Node a) a (Node a)

type Tree a = Node a

member :: Ord a => a -> Tree a -> Bool

member _ E = False

member x (N _ l a r)

| x < a = member x l

| x > a = member x r

| otherwise = True

insert :: Ord a => Tree a -> a -> Tree a

insert t v = blacken (insertInternal t v) where

insertInternal n@(N c l a r) x

| x < a = leftBalance (N c (insertInternal l x) a r)

| x > a = rightBalance (N c l a (insertInternal r x))

| otherwise = n

insertInternal E x = N R E x E

blacken (N _ l x r) = N B l x r

leftBalance :: Node a -> Node a

leftBalance (N B (N R (N R a x b) y c) z d) =

N R (N B a x b) y (N B c z d)

leftBalance (N B (N R a x (N R b y c)) z d) =

N R (N B a x b) y (N B c z d)

leftBalance n = n

rightBalance :: Node a -> Node a

rightBalance (N B a x (N R b y (N R c z d))) =

N R (N B a x b) y (N B c z d)

35

http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://dx.doi.org/10.1017/S0956796808006758
http://dx.doi.org/10.1017/S0956796808006758

The Monad.Reader Issue 22

rightBalance (N B a x (N R (N R b y c) z d)) =

N R (N B a x b) y (N B c z d)

rightBalance n = n

Appendix B. Red-Black Tree Source Code: Proving
the Forth Invariant

{-# LANGUAGE TypeFamilies, DataKinds, GADTs #-}

module RBT2 where

data Color = R | B

data ColorSingleton (c::Color) where

SR :: ColorSingleton R

SB :: ColorSingleton B

data Nat = Zero | Succ Nat

type family IncBlackHeight (c::Color) (bh::Nat) :: Nat

type instance IncBlackHeight R bh = bh

type instance IncBlackHeight B bh = Succ bh

data Node a (bh::Nat) where

E :: Node a ’Zero

N :: ColorSingleton c -> Node a bh -> a

-> Node a bh -> Node a (IncBlackHeight c bh)

data Tree a where

Root :: Node a bh -> Tree a

insert :: Ord a => Tree a -> a -> Tree a

insert (Root t) v = blacken (insertInternal t v) where

insertInternal :: Ord a => Node a n -> a -> Node a n

insertInternal n@(N c l a r) x

| x < a = leftBalance (N c (insertInternal l x) a r)

| x > a = rightBalance (N c l a (insertInternal r x))

| otherwise = n

insertInternal E x = N SR E x E

blacken (N _ l x r) = Root (N SB l x r)

36

Anton Dergunov: Generalized Algebraic Data Types in Haskell

leftBalance :: Node a bh -> Node a bh

leftBalance (N SB (N SR (N SR a x b) y c) z d) =

N SR (N SB a x b) y (N SB c z d)

leftBalance (N SB (N SR a x (N SR b y c)) z d) =

N SR (N SB a x b) y (N SB c z d)

leftBalance n = n

rightBalance :: Node a bh -> Node a bh

rightBalance (N SB a x (N SR b y (N SR c z d))) =

N SR (N SB a x b) y (N SB c z d)

rightBalance (N SB a x (N SR (N SR b y c) z d)) =

N SR (N SB a x b) y (N SB c z d)

rightBalance n = n

Appendix C. Red-Black Tree Source Code: Proving
the Third Invariant

{-# LANGUAGE TypeFamilies, DataKinds, GADTs, RankNTypes #-}

{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances #-}

module RBT3 where

data Color = R | B

data ColorSingleton (c::Color) where

SR :: ColorSingleton R

SB :: ColorSingleton B

data Nat = Zero | Succ Nat

type family IncBlackHeight (c::Color) (bh::Nat) :: Nat

type instance IncBlackHeight R bh = bh

type instance IncBlackHeight B bh = Succ bh

class ValidColors (parent::Color) (child1::Color) (child2::Color)

instance ValidColors R B B

instance ValidColors B c1 c2

data Node a (bh::Nat) (c::Color) where

37

The Monad.Reader Issue 22

E :: Node a ’Zero B

N :: ValidColors c c1 c1 => ColorSingleton c -> Node a bh c1

-> a -> Node a bh c2 -> Node a (IncBlackHeight c bh) c

data Tree a where

Root :: Node a bh B -> Tree a

data IntNode a (n::Nat) where

IntNode :: ColorSingleton c -> Node a n c1 -> a

-> Node a n c2 -> IntNode a (IncBlackHeight c n)

insert :: Ord a => Tree a -> a -> Tree a

insert (Root t) v = blacken (insertInternal t v) where

insertInternal :: Ord a => Node a n c -> a -> IntNode a n

insertInternal (N c l a r) x

| x < a = leftBalance c (insertInternal l x) a r

| x > a = rightBalance c l a (insertInternal r x)

| otherwise = IntNode c l a r

insertInternal E x = IntNode SR E x E

blacken (IntNode _ l x r) = Root (N SB l x r)

leftBalance :: ColorSingleton c -> IntNode a n -> a

-> Node a n c’ -> IntNode a (IncBlackHeight c n)

leftBalance SB (IntNode SR (N SR a x b) y c) z d =

IntNode SR (N SB a x b) y (N SB c z d)

leftBalance SB (IntNode SR a x (N SR b y c)) z d =

IntNode SR (N SB a x b) y (N SB c z d)

leftBalance c (IntNode SB a x b) z d = IntNode c (N SB a x b) z d

leftBalance c (IntNode SR a@(N SB _ _ _) x b@(N SB _ _ _)) z d =

IntNode c (N SR a x b) z d

leftBalance c (IntNode SR E x E) z d = IntNode c (N SR E x E) z d

leftBalance _ (IntNode SR (N SR _ _ _) _ _) _ _ =

error "can’t happen"

leftBalance _ (IntNode SR _ _ (N SR _ _ _)) _ _ =

error "can’t happen"

rightBalance :: ColorSingleton c -> Node a n c’ -> a

-> IntNode a n -> IntNode a (IncBlackHeight c n)

rightBalance SB a x (IntNode SR b y (N SR c z d)) =

IntNode SR (N SB a x b) y (N SB c z d)

rightBalance SB a x (IntNode SR (N SR b y c) z d) =

38

IntNode SR (N SB a x b) y (N SB c z d)

rightBalance c a x (IntNode SB b y d) = IntNode c a x (N SB b y d)

rightBalance c a x (IntNode SR b@(N SB _ _ _) y d@(N SB _ _ _)) =

IntNode c a x (N SR b y d)

rightBalance c a x (IntNode SR E y E) = IntNode c a x (N SR E y E)

rightBalance _ _ _ (IntNode SR (N SR _ _ _) _ _) =

error "can’t happen"

rightBalance _ _ _ (IntNode SR _ _ (N SR _ _ _)) =

error "can’t happen"

Error Reporting Parsers: a Monad
Transformer Approach

by Matt Fenwick 〈mfenwick100@gmail.com〉
and Jay Vyas 〈jayunit100@gmail.com〉

Monad transformers are used to deal with combinations of computational effects,
including backtracking, errors, and state, in a modular and composable way [1].

Real-world parsers require such computational effects in order to provide key
features such as error reporting and context-sensitive results. This article will
explore how monad transformers contribute to the design and implementation of
parsers.

Parser Combinators

The goals of parsing are to: 1) decide whether a string is part of the language in
question, and 2) build a meaningful representation of the structure of the parsed
string. In addition, practical parsers must recognize faulty input and accurately
report the location and cause of the problem. Thus, a parser must also decide
what generates an error, what information is in the error and how error-reporting
parsers compose.

Parser combinators are an excellent approach for building expressive, compos-
able and declarative parsers. They also benefit from host-language integration,
allowing them to snarf features such as type systems and test frameworks. There
are many excellent papers on parser combinators, such as Wadler’s classic paper
[2] on non-deterministic parser combinators, Hutton’s paper which covers factoring
parsers into smaller pieces [3], and Leijen’s Parsec paper [4]. The inspiration and
many of the names used in this article are drawn from those references.

To get a feel for what parser combinators are and how they’re used to build
parsers, we’ll first create a minimal parser combinator library. Next, we’ll add
monad transformers to the mix. We’ll divide the library into four main pieces:

The Monad.Reader Issue 22

I the Parser datatype,
I a primitive parser,
I type class instances, and
I combinators.

Parser datatype

Parsers operate on token sequences, consuming tokens from the front of the se-
quence. We could model this with the function type:

newtype Parser t =

Parser {getParser :: [t] -> [t]}

We also want parsers to return a value, if they succeed. To do this, we extend
the return type to allow for a value, which also requires a second type parameter:

newtype Parser t a =

Parser {getParser :: [t] -> ([t], a)}

However, this ignores the possibility of failure. To allow for failure, the return
value needs to be wrapped in a Maybe:

newtype Parser t a =

Parser {getParser :: [t] -> Maybe ([t], a)}

This gives us a simple, minimal definition of a parser. We’ve used newtype

instead of type so that we can create type class instances for our parsers later on.

A primitive parser

The simplest parser is item; it consumes a single token if available and fails oth-
erwise:

item :: Parser t t

item = Parser f

where

f [] = Nothing

f (x:xs) = Just (xs, x)

This captures the basic concept that parsers are inherently sequential – they
consume tokens left-to-right from a list.

42

Matt Fenwick, Jay Vyas: Error Reporting Parsers: a Monad Transformer Approach

Type class instances

For running multiple parsers in sequence, the combinators from the Monad and
Applicative type classes are very useful; our next step is to implement them.

First is the Functor instance, which we need since it’s a superclass of Applicative.
It just maps a function over the result value, and relies on the Functor instances
of Maybe and pairs:

instance Functor (Parser t) where

fmap f (Parser p) = Parser (fmap (fmap f) . p)

The <*> operator of Applicative runs parsers sequentially and applies the result
of the first to the result of the second; it has to make sure that the (possibly
modified) output token stream from the first parser is passed to the second:

import Control.Applicative (Applicative(..))

instance Applicative (Parser t) where

pure x = Parser (\xs -> pure (xs, x))

Parser p1 <*> Parser p2 = Parser p3

where p3 xs = case (p1 xs) of

Nothing -> Nothing;

Just (ys, f) -> fmap (fmap f) (p2 ys)

The Monad instance is similar to the Applicative instance, except that the actual
result value of the first parser is used to generate the second parser; similarly to
the Functor instance, this depends on instances of its underlying types:

instance Monad (Parser t) where

return x = Parser (\ts -> return (ts, x))

Parser p >>= f = Parser (\ts ->

p ts >>= \(ts’, x) ->

getParser (f x) ts’)

The Alternative type class expresses choice; the instance is is defined in terms
of the Alternative instance of the underlying result type, Maybe.

import Control.Applicative (Alternative(..))

instance Alternative (Parser t) where

empty = Parser (const empty)

Parser l <|> Parser r = Parser (\ts -> l ts <|> r ts)

43

The Monad.Reader Issue 22

Combinators

We can capture common patterns of parser construction in combinators in order to
make it more convenient. The check combinator, analogous to Control.Monad.mfilter,
is used to validate a parse result:

check :: (Monad f, Alternative f) => (a -> Bool) -> f a -> f a

check p m =

m >>= \x -> if p x then return x else empty

Using check, we can build a convenient combinator to parse specific matching
tokens:

literal :: Eq t => t -> Parser t t

literal x = check (== x) item

Examples

First, let’s see item in action. It fails on empty lists, and succeeds consuming one
token otherwise:

*Main> getParser item ""

Nothing

*Main> getParser item "abcde"

Just ("bcde",’a’)

We can run parsers in sequence using the Applicative combinators. First, one
parser is run, then the second is run, and the token position is threaded between
the two. Note that both parsers must succeed in order for the combined parser to
succeed:

*Main> getParser (item *> item) "abcde"

Just ("cde",’b’)

Main> getParser (fmap (,) item <> item) "abcde"

Just ("cde",(’a’,’b’))

*Main> getParser (item *> item) "a"

Nothing

Parsers built out of literal only succeed when the next token matches the
specified one:

44

Matt Fenwick, Jay Vyas: Error Reporting Parsers: a Monad Transformer Approach

*Main> getParser (literal ’a’) "abcde"

Just ("bcde",’a’)

*Main> getParser (literal ’a’) "bcde"

Nothing

Using the Alternative combinators, we can create parsers that succeed if any of
their sub-parsers succeed. This is what allows parsers to backtrack, trying various
alternatives if one fails:

*Main> getParser (literal ’a’ <|> literal ’b’) "abcde"

Just ("bcde",’a’)

*Main> getParser (literal ’a’ <|> literal ’b’) "bacde"

Just ("acde",’b’)

*Main> getParser (literal ’a’ <|> literal ’b’) "cdeab"

Nothing

Finally, let’s parse arbitrarily deeply nested parentheses. This example demon-
strates the use of fmap to apply a function to a parse result, check to make sure
that char doesn’t consume parentheses, literal to match specific tokens exactly,
many to introduce repetition, <|> to express choice, and *> and <* to sequence
parsers:

data Nesting

= One Char

| Many [Nesting]

deriving (Show, Eq)

char :: Parser Char Nesting

char = fmap One $ check (not . flip elem "()") item

level :: Parser Char Nesting

level = literal ’(’ *> (fmap Many $ many element) <* literal ’)’

element :: Parser Char Nesting

element = char <|> level

parseNest :: Parser Char [Nesting]

parseNest = many element

Here are some examples of this code in action:

45

The Monad.Reader Issue 22

*Main> getParser parseNest "(((()))))"

Just (")",[Many [Many [Many [Many []]]]])

*Main> getParser parseNest "(()abc(def)())zy"

Just ("",[Many [Many [],One ’a’,One ’b’,One ’c’,

Many [One ’d’,One ’e’,One ’f’],Many []],

One ’z’,

One ’y’])

*Main> getParser parseNest "(()abc(def)()"

Just ("(()abc(def)()",[])

This concludes the implementation of a simple parser. In the rest of this article,
we’ll rework and augment these basic parser combinators by generalizing the im-
plementations and extending the result types, while taking advantage of monad
transformers to keep them modular.

Monad transformers

How can we use monad transformers to help us create parsers and parser combi-
nators? The parser type we used earlier – [t] -> Maybe ([t], a) – can be built
out of the StateT monad transformer (from the standard mtl [5] library) applied
to Maybe. Here’s the StateT implementation:

newtype StateT s m a = StateT { runStateT :: s -> m (a,s) }

Substituting in [s] for s and Maybe for m in the right-hand side produces (note
that the type variable m is no longer needed):

newtype StateT s a = StateT { runStateT :: [s] -> Maybe (a,[s]) }

This is identical to the Parser type given before modulo the order of the result
tuple, so we can redefine the parser type as:

import Control.Monad.State (StateT(..))

type Parser t a = StateT [t] Maybe a

The item parser is reimplemented using the combinators from MonadState –
token lists are the ‘state’ that item must inspect and modify:

{-# LANGUAGE FlexibleContexts #-}

46

Matt Fenwick, Jay Vyas: Error Reporting Parsers: a Monad Transformer Approach

import Control.Monad.State (MonadState (..))

item :: (MonadState [t] m, Alternative m) => m t

item =

get >>= \xs -> case xs of

(t:ts) -> put ts *> pure t;

[] -> empty;

There are two major benefits to our parsers from using monad transformers:
I compositional implementation with semantic building blocks – the mtl library

provides implementations for Maybe, Error, and State building blocks; using
these, we can easily describe the semantics of our parsers without writing
very much code, and

I type class instances – in addition to providing the building blocks, the mtl
provides instances for common type classes, so we only have to implement
parser-specific operations.

Introducing Woof: a Simple Lisp

The rest of this articule will progressively adding features to a simple initial imple-
mentation on our way to creating an error-reporting parser. The simple language
we’ll use as a motivation for this task is Woof, a simple dialect of Lisp.

The language definition of Woof in pseudo-BNF is:

Woof := Form(+)

Form := Symbol | Special | Application

Symbol := [a-zA-Z](+)

Special := ’{’ (Define | Lambda) ’}’

Define := ’define’ Symbol Form

Lambda := ’lambda’ ’{’ Symbol(*) ’}’ Form(+)

Application := ’(’ Form(+) ’)’

Whitespace := \s+

Comment := ’;’ (not ’\n’)(*)

There is an additional rule that whitespace and comments may appear in any
amount before or after tokens. Our tokens are:

I {
I }
I (
I)
I Symbol

47

The Monad.Reader Issue 22

Example 1: Recognition and Tree-Building

Preliminaries

Our first Woof parser will only be responsible for determining whether an input
text conforms to the language definition and building an Abstract Syntax Tree
(AST) representing the structure of the parsed input. Here’s the AST definition
we’ll use:

data AST

= ASymbol String

| ALambda [String] [AST]

| ADefine String AST

| AApp AST [AST]

deriving (Show, Eq)

We’ll also want a function for running our parsers, using the type given in the
prevous section:

runParser :: Parser t a -> [t] -> Maybe (a, [t])

runParser = runStateT

Token parsers

Our first parsers are for the most basic syntactic elements: tokens. These include
the four braces, symbols, strings, numbers, whitespace, and comments. To recog-
nize braces, we use the item and check combinators to build a new combinator,
satisfy, that checks whether the next character meets a condition:

satisfy :: (MonadState [t] m, Alternative m) => (t -> Bool) -> m t

satisfy = flip check item

Because we used MonadState’s combinators to build item, literal has a slightly
different type; we also take advantage of satisfy to simplify its implementation:

{-# LANGUAGE NoMonomorphismRestriction #-}

literal :: (Eq t, MonadState [t] m, Alternative m) => t -> m t

literal c = satisfy ((==) c)

Now we’re ready to build parsers for the four bracket tokens. First, a simple
bracket parser:

opencurly = literal ’{’

48

Matt Fenwick, Jay Vyas: Error Reporting Parsers: a Monad Transformer Approach

It accepts open curly brackets and rejects everything else:

*Main> map (runParser opencurly) ["{abc", "}abc", "(abc", "abc"]

[Just (’{’, "abc"), Nothing, Nothing, Nothing]

Recall, however, that our specification said that comments and whitespace can
occur anywhere before or after tokens – how should this be handled?

First, we need to define the whitespace and comment patterns – we’ll also rename
the some and many functions from Control.Alternative to more clearly indicate their
semantics:

many0 = many

many1 = some

whitespace = many1 $ satisfy (flip elem " \n\t\r\f")

comment = pure (:) <*> literal ’;’ <*> many0 (not1 $ literal ’\n’)

We want to throw away comments and whitespace, and this process must occur
after every token. We can do this by using a combinator which first parses a token
and then throws away junk:

junk = many0 (whitespace <|> comment)

tok p = p <* junk

The comment parser uses a new combinator, not1, built out of a type class,
Switch, modeling computations which can be switched from successful to failing
and vice versa:

class Switch f where

switch :: f a -> f ()

instance Switch Maybe where

switch (Just _) = Nothing

switch Nothing = Just ()

instance (Functor m, Switch m) => Switch (StateT s m) where

switch (StateT f) = StateT g

where

g s = fmap (const ((), s)) . switch $ f s

not1 :: (MonadState [t] m, Alternative m, Switch m) => m a -> m t

not1 p = switch p *> item

49

The Monad.Reader Issue 22

With tok in hand, we can fix opencurly:

opencurly = tok $ literal ’{’

*Main> runParser opencurly "{;abc\ndef"

Just (’{’, "def")

*Main> runParser opencurly "(def"

Nothing

Excellent! The opencurly parser matches an open curly brace, failing otherwise,
and discards trailing whitespace and comments.

It’s straightforward to define parsers for the other three brace tokens:

closecurly = tok $ literal ’}’

openparen = tok $ literal ’(’

closeparen = tok $ literal ’)’

The parser for our last token, Symbol, is more complicated, as any number of
alphabetical characters is valid. We’ll use satisfy and a predicate to check that
a character is valid, and many1 to match one or more valid characters:

symbol = tok $ many1 char

where char = satisfy (flip elem ([’a’ .. ’z’] ++ [’A’ .. ’Z’]))

*Main> runParser symbol "abc123"

Just ("abc","123")

*Main> runParser symbol "abc;sdfasdfsa\n 123"

Just ("abc","123")

*Main> runParser symbol "123;sdfasdfsa\n abc"

Nothing

Note that we again use tok to throw away trailing junk.

Syntactic structures

Whereas our token parsers dealt with the syntactic primitives of the Woof gram-
mar, the remaining parsers will implement grammar rules that combine the tokens
into syntactic structures.

The first combining form is function application. The rule says that it is de-
limited by matching parentheses, in between which must appear one form as the

50

Matt Fenwick, Jay Vyas: Error Reporting Parsers: a Monad Transformer Approach

operator, followed by any number of forms as the arguments to which the operator
is applied. We can say that like so:

application =

openparen *>

pure AApp <*>

form <*>

many0 form <*

closeparen

Note that all the parser sequencing is done using Applicative combinators – we
don’t need to use the monadic ones. Also, we used pure to inject a value – the
function AApp – into the parser. pure has no effect on the tokens and always
succeeds:

*Main> runParser (pure 3) ""

Just (3,"")

*Main> runParser (pure 3) "abc"

Just (3,"abc")

Next, we move on to the special forms. All special forms are delimited with
curly braces, and lambda and define are our special forms, so we have:

special = opencurly *> (define <|> lambda) <* closecurly

A straightforward translation of define from the grammar produces:

define =

check (== "define") symbol *>

pure ADefine <*>

symbol <*>

form

On to Lambda! Not only does Lambda have additional syntax with its parameter
list, but we also need to ensure that the parameter names are unique. We can do
that using the check combinator again:

lambda =

check (== "lambda") symbol *>

opencurly *>

pure ALambda <*>

check distinct (many0 symbol) <*>

(closecurly *>

51

The Monad.Reader Issue 22

many1 form)

where

distinct names = length names == length (nub names)

If the symbols are distinct, the parameter list subparser will succeed, whereas if
there’s a repeated symbol, it will fail.

Finishing touches

All we have left to do are form (which we’ve already used recursively to build the
previous parsers) and woof.

A form is either a symbol, application, or a special form. We could just write:

form = symbol <|> application <|> special

except that the types don’t match – symbol’s type parameter is a String, whereas
the other two have ASTs. We fix that by mapping the ASymbol function over
symbol:

form = fmap ASymbol symbol <|> application <|> special

The final parser, woof, needs to not only parse all the forms, but also make sure
that the entire input is consumed. The end of input check is done with the end

parser:

endCheck = switch item

We also need to discard leading comments and whitespace, so the final Woof
parser is:

woof = junk *> many0 form <* endCheck

Examples

Let’s look at a few examples of our parser in action. Here are a couple of successful
examples:

*Main> runParser woof "; \n {lambda {x y z} a b (c b a)}end"

Just ([ALambda ["x","y","z"]

[ASymbol "a",

ASymbol "b",

AApp (ASymbol "c")

[ASymbol "b",

ASymbol "a"]],

52

Matt Fenwick, Jay Vyas: Error Reporting Parsers: a Monad Transformer Approach

ASymbol "end"],

"")

*Main> runParser woof "a b c {define q (f x)}"

Just ([ASymbol "a",

ASymbol "b",

ASymbol "c",

ADefine "q" (AApp (ASymbol "f") [ASymbol "x"])],"")

And a failing one:

*Main> runParser woof "a b c {define q (f x)},"

Nothing

Note that while the first two parses consume the entire input, while the last one
fails because it doesn’t recognize the trailing comma.

Example 2: error-reporting

While our first parser worked great on valid input, it wasn’t helpful when the
input was malformed. When the parser finds bad input, we’d like it to produce an
informative error, indicating what and where the problem was.

Let’s start with an informal spec of different cases of malformed input, along
with the error messages that should be reported:

I application: missing operator:
()

I application: missing close parenthesis:
(a b

I define: missing symbol:
{define (a b c)}

I define: missing form:
{define a}

I lambda: missing parameter list:
{lambda (a b c)}

I lambda: duplicate parameter names:
{lambda {a b a} (c d)}

I lambda: missing parameter list close curly:
{lambda {a b (c d)}

I lambda: missing body form:
{lambda {a b}}

I special form: unable to parse:

53

The Monad.Reader Issue 22

{defin x y}
I special form: missing close curly:

{define x y
I woof: unparsed input:

a,b

To allow error reporting in our parsers, we first need to extend our monad stack,
adding in a layer for errors. We’ll use a second monad transformer type class –
MonadError, replace the Maybe layer with its corresponding transformer datatype
MaybeT, and add in an Either layer on the bottom of the stack. Our parser stack
and runParser function are now:

type Parse e t a = StateT [t] (MaybeT (Either e)) a

runParser :: Parse e t a -> [t] -> Either e (Maybe (a, [t]))

runParser p xs = runMaybeT (runStateT p xs)

While our previous parsers had two different results – Nothing and Just – our new
parsers have three possible results: success (Right Just), failure (Right Nothing),
and error (Left). A parse failure means that a parser wasn’t able to match the
input, but nothing bad happened; failures can be recovered from if there is an
alternative parse that succeeds. However, an error means that an unrecoverable
problem has been found and that parsing should immediately stop; the parser will
not be able to recover even if there are alternatives, since backtracking will not be
performed. Note that successful and failing parses are wrapped in an additional
Right constructor:

*Main> runParser item "abc"

Right (Just (’a’,"bc"))

*Main> runParser item ""

Right Nothing

*Main> runParser (throwError "oops!") ""

Left "oops!"

Although the <|> combinator can recover from failures, it can’t recover from
errors. Compare:

*Main> runParser (satisfy (== ’a’) <|> satisfy (== ’b’)) "babc"

Right (Just (’b’,"abc"))

*Main> runParser (throwError "no!" <|> satisfy (== ’b’)) "babc"

Left "no!"

54

Matt Fenwick, Jay Vyas: Error Reporting Parsers: a Monad Transformer Approach

We’ll take advantage of this backtracking restriction to produce accurate error
messages.

Type Class Preliminaries

Unfortunately, the standard MonadError instance for the Either datatype does
not fit our needs – it requires an Error constraint that we do not want. We’ll im-
plement our own MonadError type class. We’ll need an instance for each member
of our stack – Either, StateT, and MaybeT:

{-# LANGUAGE FlexibleContexts, MultiParamTypeClasses,

FlexibleInstances, TypeFamilies #-}

class Monad m => MonadError m where

type Error m :: *

throwError :: Error m -> m a

catchError :: m a -> (Error m -> m a) -> m a

instance MonadError (Either e) where

type Error (Either e) = e

throwError = Left

catchError (Right x) _ = Right x

catchError (Left e) f = f e

instance MonadError m => MonadError (StateT s m) where

type Error (StateT s m) = Error m

throwError = lift . throwError

catchError m f = StateT g

where

g s = catchError (runStateT m s)

(\e -> runStateT (f e) s)

instance MonadError m => MonadError (MaybeT m) where

type Error (MaybeT m) = Error m

throwError = lift . throwError

catchError m f = MaybeT $ catchError (runMaybeT m)

(runMaybeT . f)

Note how the StateT and MaybeT instances don’t really do anything with the
errors; they just pass the error on through to the next level. That’s why they
both require that the next lower level supports MonadError. This code uses type
families to state what the error type is; explaining type families in more detail is

55

The Monad.Reader Issue 22

out of scope for this article, but roughly, given some MonadError m, you can write
down the type of error that monad supports by saying Error m.

We’ll also need an instance of Switch for MaybeT:

instance Functor m => Switch (MaybeT m) where

switch (MaybeT m) = MaybeT (fmap switch m)

Error messages

We must modify the remaining parsers to report meaningful error messages; let’s
define the messages that will be reported in each case:

eAppOper = "application: missing operator"

eAppClose = "application: missing close parenthesis"

eDefSym = "define: missing symbol"

eDefForm = "define: missing form"

eLamParam = "lambda: missing parameter list"

eLamDupe = "lambda: duplicate parameter names"

eLamPClose = "lambda: missing parameter list close curly"

eLamBody = "lambda: missing body form"

eSpecClose = "special form: missing close curly"

eSpecial = "special form: unable to parse"

eWoof = "woof: unparsed input"

The MonadError type class provides two useful combinators: throwError for
generating errors and catchError for dealing with them. We can ignore the sec-
ond because we don’t need to recover from errors, just report them, but when
should an error be generated and what data should it include? throwError will
unconditionally throw an error, but often we will only want to conditionally throw
an error. Thus, we introduce the commit combinator:

commit :: (MonadError m, Alternative m) => Error m -> m a -> m a

commit err p = p <|> throwError err

This combinator takes two arguments: an error value and a monadic computa-
tion. It first tries to run the computation; if the computation fails, it generates an
error. The definition of ’failure’ is provided by the Alternative instance of m. The
reason for its name is that it restricts backtracking and alternatives; it “commits”
the parser to a do-or-die situation – either it successfully parses the input, or the
parsing stops. It’s based on the nofail combinator of [6] and also on [7].

What data do we want to include in our errors? A String describing the error
and a token reporting the position will do:

56

Matt Fenwick, Jay Vyas: Error Reporting Parsers: a Monad Transformer Approach

type Error = String

We’ll first add error-reporting to application:

application =

openparen >>

commit eAppOper form >>= \op ->

many0 form >>= \args ->

commit eAppClose closeparen >>

return (AApp op args)

This parser works by first running the open-parenthesis parser; then, if either
form or close-parenthesis fails, an appropriate error is generated with a message
describing the problem. However, if the open parenthesis is not successfully parsed,
it’s a failure but not an error. Examples:

*Main> runParser application "oops"

Right Nothing

*Main> runParser application "(a b c)"

Right (Just (AApp (ASymbol "a") [ASymbol "b",ASymbol "c"],""))

*Main> runParser application "\n()"

Left "application: missing operator"

*Main> runParser application "(a b"

Left "application: missing close parenthesis"

The define and lambda parsers are upgraded similarly:

define =

check (== "define") symbol *>

pure ADefine <*>

commit eDefSym symbol <*>

commit eDefForm form

lambda =

check (== "lambda") symbol >>

commit eLamParam opencurly >>

many0 symbol >>= \params ->

(if distinct params

then return ()

else throwError eLamDupe) >>

57

The Monad.Reader Issue 22

commit eLamPClose closecurly >>

commit eLamBody (many1 form) >>= \bodies ->

return (ALambda params bodies)

where

distinct names = length names == length (nub names)

Note that commit isn’t used until we can be sure that we’re in the right rule: if,
in the define parser, we committed to parsing the “define” keyword, we wouldn’t
be able to backtrack and try the lambda parser if that failed. Thus, if errors are
treated as unrecoverable, it’s important not to place a commit where backtracking
might be necessary to parse a valid alternative. In our example, however, once
we see an open curly brace and a define, we’re sure that we’re in the define

rule; allowing useless backtracking would only destroy our ability to report errors
cleanly and accurately.

Error messages: finishing touches

To complete the error-reporting parser, we need to change a couple more details.
First, we want an error reported when an open curly brace is found, but no special
form can be parsed. We extend the special parser to report an error if it matches
an open brace but not define or lambda:

special =

opencurly *> commit eSpecial (define <|> lambda) <* commit eSpecClose closecurly

The form parser doesn’t have to be changed:

form = fmap ASymbol symbol <|> application <|> special

When we can no longer parse any forms, instead of failing, we’d like to report
an error if there’s any input left, and otherwise succeed:

woof = junk *> many0 form <* commit eWoof endCheck

Error messages: examples

While correct input is still parsed successfully:

*Main> runParser woof "{define fgh {lambda {f x} (f x)}}"

Right (Just ([ADefine "fgh" (ALambda ["f","x"]

[AApp (ASymbol "f")

[ASymbol "x"]])],

[]))

58

Matt Fenwick, Jay Vyas: Error Reporting Parsers: a Monad Transformer Approach

Incorrect input results in an error. For each of the items in our error spec, we
can show that our parser correctly reports an error:

*Main> runParser woof "(a b"

Left "application: missing close parenthesis"

*Main> runParser woof "{define (a b c)}"

Left "define: missing symbol"

Example 3: reporting position

Knowing that a close-parenthesis is missing somewhere deep inside a nested mess
of forms isn’t very helpful – you also want to know where it happened. Let’s add
that to our parser.

Parser type

Once again, we extend the monad transformer stack with another layer – a second
state layer, in which the line and column position will be kept as simple Ints. The
error type is also extended to include a position as well as a message:

type Pos = (Int, Int)

type Err = (String, Pos)

type Parser t a = StateT [t] (StateT Pos (MaybeT (Either Err))) a

runParser is extended to support the new stack; it assumes we always start
parsing at line 1, column 1:

runParser :: Parser t a -> [t] -> Either Err (Maybe ((a, [t]), Pos))

runParser p ts = runMaybeT $ runStateT (runStateT p ts) (1, 1)

Now that we have two separate state layers, we need to be sure not to mix them
up (fortunately, because the types of the states are different, Haskell’s type system
will helpfully complain if I mess up). The lift method of the MonadTrans type
class allows us to access the position state:

getState :: Parser Char Pos

getState = lift get

putState :: Pos -> Parser Char ()

putState = lift . put

59

The Monad.Reader Issue 22

updateState :: (Pos -> Pos) -> Parser Char ()

updateState f = getState >>= (putState . f)

We also need to update item, such that when it consumes a character, it updates
the line/column position. We’ll do this by splitting it into two parts, the part that
consumes a single character, and the part that updates the position:

basic_item :: (MonadState [t] m, Alternative m) => m t

basic_item =

get >>= \xs -> case xs of

(t:ts) -> put ts *> pure t;

[] -> empty;

item :: Parser Char Char

item = basic_item >>= \x -> updateState (f x) >> pure x

where f ’\n’ (ln, c) = (ln + 1, 1)

f _ (ln, c) = (ln, c + 1)

For simplicity, only ’
n’ characters will count as newlines; every other character, including tabs, will
count as a single column on the same line.

Position reporting

To actually report the position when an error is detected, we introduce a new
combinator, which I’ll call cut:

cut :: String -> Parser Char a -> Parser Char a

cut message parser =

getState >>= \p ->

commit (message, p) parser

It checks the current position, runs a parser, and if the parser fails, reports an
error consiting of a message and the position.

To take advantage of this combinator, we essentially replace every use of commit
with cut:

application =

openparen >>

cut eAppOper form >>= \op ->

many0 form >>= \args ->

cut eAppClose closeparen >>

60

Matt Fenwick, Jay Vyas: Error Reporting Parsers: a Monad Transformer Approach

return (AApp op args)

define =

check (== "define") symbol *>

pure ADefine <*>

cut eDefSym symbol <*>

cut eDefForm form

lambda =

check (== "lambda") symbol >>

cut eLamParam opencurly >>

many0 symbol >>= \params ->

(if distinct params

then return ()

else cut eLamDupe empty) >>

cut eLamPClose closecurly >>

cut eLamBody (many1 form) >>= \bodies ->

return (ALambda params bodies)

where

distinct names = length names == length (nub names)

special =

opencurly *> cut eSpecial (define <|> lambda) <* cut eSpecClose closecurly

form = fmap ASymbol symbol <|> application <|> special

woof = junk *> many0 form <* cut eWoof end

Now the parsers report useful errors:

*Main> runParser woof " abc 123 "

Left ("woof: unparsed input",(1,6))

*Main> runParser woof " (((abc ())) "

Left ("application: missing operator",(1,10))

*Main> runParser woof "{define const \n {lambda {x x} \n x}"

Left ("lambda: duplicate parameter names",(2,15))

61

The Monad.Reader Issue 22

Stack Order

While the contents of a transformer stack is important, the order of the layers is
important as well [8]. Let’s revisit our first Woof parser – what if our stack had
been Maybe/State instead of State/Maybe?

State/Maybe: s -> Maybe (a, s)

Maybe/State: s -> (Maybe a, s)

given:

import Control.Monad.Trans.Maybe (MaybeT(..))

import Data.Functor.Identity (Identity(..))

type Parser’ t a = MaybeT (StateT [t] Identity) a

runParser’ :: Parser’ t a -> [t] -> (Maybe a, [t])

runParser’ p xs = runIdentity $ runStateT (runMaybeT p) xs

We can compare it to the earlier parser:

*Main> runParser’ (literal ’a’) "aqrs"

(Just ’a’,"qrs")

*Main> runParser’ (literal ’a’) "qrs"

(Nothing,"rs")

Whereas:

*Main> runParser (literal ’a’) "qrs"

Nothing

*Main> runParser (literal ’a’) "aqrs"

Just (’a’,"qrs")

The difference is that Maybe/State always returns a modified state, regardless
of the success of the computation, whereas State/Maybe only returns a modified
state if the computation is successful. This means that backtracking doesn’t work
right with Maybe/State – tokens are consumed even when the parsers don’t match,
as the example shows.

On the other hand, the order of Error and Maybe relative to each other isn’t
important. We can show this by losslessly converting values from one stack to the
other and back:

62

Matt Fenwick, Jay Vyas: Error Reporting Parsers: a Monad Transformer Approach

type Stack1 e a = Either e (Maybe a)

type Stack2 e a = Maybe (Either e a)

forward :: Stack1 e a -> Stack2 e a

forward (Left e) = Just $ Left e

forward (Right Nothing) = Nothing

forward (Right (Just x)) = Just $ Right x

backward :: Stack2 e a -> Stack1 e a

backward Nothing = Right Nothing

backward (Just (Left e)) = Left e

backward (Just (Right x)) = Right $ Just x

identityForward :: Stack1 e a -> Stack1 e a

identityForward = backward . forward

identityBackward :: Stack2 e a -> Stack2 e a

identityBackward = forward . backward

No partial functions were used. Now we can use these functions to convert
between the two stacks. Note the final result is the same as the input:

vals = [Left "an error", Right Nothing, Right $ Just "success"]

*Main> map forward vals

[Just (Left "an error"),Nothing,Just (Right "success")]

*Main> map identityForward vals

[Left "an error",Right Nothing,Right (Just "success")]

Another important point is that our parsers don’t specify which order – May-
be/State or State/Maybe – they prefer, and will work with either. This means
that the semantics are ultimately determined by the actual monad stack we use.

Monad transformer motivation

Let’s take a quick look at what we’ve done from a different perspective that may
help motivate why monad transformers were used.

In the first parser, we could parse valid input, but invalid input left us with
absolutely no idea what the problem was or where:

*Main> runParser woof " {define const {lambda {x x} x}} "

Nothing

63

The Monad.Reader Issue 22

The second parser reported what the problem was, but not where:

*Main> runParser woof " {define const {lambda {x x} x}} "

Left "lambda: duplicate parameter names"

And the third parser was able to report both what and where the problem
occurred:

*Main> runParser woof " {define const {lambda {x x} x}} "

Left ("lambda: duplicate parameter names",(1,25))

Thus, a key to the usefulness of the last parser is that it supports monadic
effects – backtracking, error reporting, and state. The parsers which supported
fewer effects were not as useful.

This emphasizes some major advantages of using monad transformers:
I it’s easy to create stacks supporting multiple effects
I type class instances are taken care of by the library, so stacks already support

many useful combinators
I it’s easy to change the composition and order of stacks

We could see these advantages when many of the parsers didn’t have to change
at all from one version to the next (although some of their types did change).

Parsec comparison

A quick word about Parsec [4], a popular and battle-tested parser combinator
library for Haskell:

The approach I’ve described differs from Parsec’s approach with respect to back-
tracking and error-reporting. By default, Parsec generates LL(1) parsers – this
means it uses predictive parsing with only a single token of lookahead. This is
useful for both efficiency and better error reporting. However, often a single token
is not enough to unambiguously determine what rule should be tried; for these
cases, one must use its try combinator. It is up to the programmer to determine
when it’s necessary to add try to a parser implementation.

On the other hand, my approach by default uses unlimited lookahead; it also
doesn’t automatically generate meaningful errors. It is up to the programmer to
generate useful errors using the throwError and commit combinators.

Conclusion

Monad transformers provide an elegant solution to error reporting in parser com-
binators. Better yet, they are extensible – we could go back and add more features

64

to our parsers using additional transformers, perhaps extending our parser to save
partial results, so that if there’s an error, it reports the progress that it had made
before the error. We could do that using a Writer transformer. Or we check to
make sure that all variables are in scope when they’re used using a Reader trans-
former. We could even capture whitespace and comment tokens, instead of just
throwing them away, in case they contained valuable information. And the best
part of it is, most of the parsers we already wrote would continue to work fine
without needing any modifications. That is the power of monad transformers!

References

[1] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular in-
terpreters. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 333–343. ACM (1995).

[2] Philip Wadler. How to replace failure by a list of successes a method for excep-
tion handling, backtracking, and pattern matching in lazy functional languages. In
Jean-Pierre Jouannaud (editor), Functional Programming Languages and Computer
Architecture, volume 201 of Lecture Notes in Computer Science, pages 113–128.
Springer Berlin Heidelberg (1985). http://dx.doi.org/10.1007/3-540-15975-4_

33.

[3] Graham Hutton and Erik Meijer. Monadic parser combinators (1996).

[4] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combinators for
the real world (2001).

[5] Hackage – mtl. http://hackage.haskell.org/package/mtl-2.1.2.

[6] Graham Hutton. Higher-order functions for parsing. Journal of Functional Program-
ming, 2(3):pages 323–343 (1992).

[7] Kota Mizushima, Atusi Maeda, and Yoshinori Yamaguchi. Packrat parsers can
handle practical grammars in mostly constant space. In Proceedings of the 9th
ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
engineering, pages 29–36. PASTE ’10, ACM, New York, NY, USA (2010). http:

//doi.acm.org/10.1145/1806672.1806679.

[8] Jeff Newbern. All About Monads. http://monads.haskell.cz/html/stacking.

html.

http://dx.doi.org/10.1007/3-540-15975-4_33
http://dx.doi.org/10.1007/3-540-15975-4_33
http://hackage.haskell.org/package/mtl-2.1.2
http://doi.acm.org/10.1145/1806672.1806679
http://doi.acm.org/10.1145/1806672.1806679
http://monads.haskell.cz/html/stacking.html
http://monads.haskell.cz/html/stacking.html

Two Monoids for Approximating
NP-Complete Problems

by Mike Izbicki 〈mike@izbicki.me〉

As a TA, I was confronted with a real life instance of the NP-complete Scheduling
problem. To solve the problem, I turned to the classic Least Processing Time First
(LPTF) approximation algorithm. In this article, we’ll see that because LPTF is
a monoid homomorphism, we can implement it using HLearn’s HomTrainer type
class. This gives us parallel and online versions of LPTF “for free.” We’ll also be
able to use these same techniques to solve a related problem called BinPacking.
Hopefully, at the end of the article you’ll understand when the HomTrainer class
might be a useful tool, and how to use and build your own instances.

Framing The Problem

I enjoy TAing the introduction to C++ course at my university. Teaching pointer
arithmetic can be immensely frustrating, but it’s worth it to see the students when
it all finally clicks. Teaching is even better when it causes you to stumble onto an
interesting problem. Oddly enough, I found this cool Haskell problem because of
my C++ teaching assistanceship.

The professor wanted to assign a group project, and I had to pick the groups.
There had to be exactly five groups, and the groups needed to be as fair as possible.
In other words, I was supposed to evenly distribute the best and worst students.

After a little thought, I realized this was an instance of the NP-complete Schedul-
ing problem in disguise. This problem was first formulated in the context of
concurrent computing. In the textbook example of Scheduling, we are given
p processors and n tasks. Each task ti has some associated time it will take to
complete it. The goal is to assign the tasks to processors so as to complete the
tasks as quickly as possible.

The Monad.Reader Issue 22

The Scheduling problem is shown graphically in Figure 1. Processors are
drawn as bins, and tasks are drawn as green blocks inside the bins. The height
of each task represents the length of time required to process it. Our goal is to
minimize the processing time given a fixed number of processors.

t2

t6

t1

t7

t5

t10

t8

t4

t3

t9

b1 b2 b3 b4

p
ro

ce
ss

in
g

ti
m

e

fixed number of processors

Figure 1: The Scheduling problem

What does this have to do with the problem my professor gave me? Well, we
can think of the number of groups as the number of processors, each student is
a task, and the student’s current grade is the task’s processing time. Then, the
problem is to find a way to divvy up the students so that the sum of grades for the
“best” group is as small as possible. We’ll see some code for solving this problem
in a bit.

There is another closely related problem called BinPacking that is easily con-
fused with Scheduling. In BinPacking, instead of fixing the number of bins
and minimizing the amount in the bins, we fix the bin size and minimize the total
number of bins used. Compare Figure 2 below and Figure 1 above to see the dif-
ference. The BinPacking problem was originally studied by shipping companies,
although like Sheduling it occurs in many domains.

t2

t6

t1

t7

t10

t8

t3

t9

t4

t5

b1 b2 b3 b4 b5 b6

number of bins

fi
x
ed

b
in

si
ze

...

Figure 2: The BinPacking problem

68

Mike Izbicki: Two Monoids for Approximating NP-Complete Problems

Both Scheduling and BinPacking are NP-complete. Therefore, I had no
chance of creating an optimal grouping for my professor—the class had 100 stu-
dents, and 2100 is a big number! So I turned to approximation algorithms. One
popular approximation for Scheduling is called Longest Processing Time First
(LPTF). When analyzing these approximation algorithms, it is customary to com-
pare the quality of their result with that of the theoretical optimal result. In this
case, we denote the total processing time of the schedule returned by LPTF as
LPTF, and the processing time of the optimal solution as OPT. It can be shown
that the following bound holds:

LPTF ≤
(

4

3
− 1

3n

)
OPT

This bound was proven in the late 1960’s, but the original paper remains quite
readable today [1]. By making this small sacrifice in accuracy, we get an algorithm
that runs in time Θ(n log n) instead of Θ(2n). Much better! In the rest of this arti-
cle, we’ll take a detailed look at a Haskell implementation of the LPTF algorithm,
and then briefly use similar techniques to solve the BinPacking problem.

The Scheduling HomTrainer

When implementing an algorithm in Haskell, you always start with the type signa-
ture. LPTF takes a collection of tasks and produces a schedule, so it’s type might
look something like:

:: [Task] → Schedule

Anytime I see see a function of this form, I ask myself, “Can it be implemented
using HLearn’s HomTrainer type class?” HomTrainers are useful because the com-
piler automatically derives online and parallel algorithms for all instances. In
this section, we’ll get a big picture view of how this class will help us solve the
Scheduling problem. We start by looking at the format of a HomTrainer instance
as shown graphically in Figure 3 below.

data set model answer
train question

free monoid

homomorphism

monoid

HomTrainer

Figure 3: Basic requirements of the HomTrainer type class

69

The Monad.Reader Issue 22

There’s a lot going on in Figure 3, but we’ll look at things piece-by-piece. The
black boxes represent data types and the black arrows represent functions. In our
case, the data set is the collection of tasks we want scheduled and the model is
the schedule. The train function is the LPTF algorithm, which generates a model
from the data points. Finally, our model is only useful if we can ask it questions.
In this case, we might want to ask, “Which processor is assigned to task t10?” or
“What are all the tasks assigned to processor 2?”

The blue arrows in the diagram impose some constraints on the data types and
functions. These requirements are a little trickier: they specify that our training
algorithm must be a monoid homomorphism from the free monoid. These are
scary sounding words, but they’re pretty simple once you’re familiar with them.
We’ll define them and see some examples.

In Haskell, the Monoid type class is defined as having an identity called mempty

and a binary operation called mappend:

class Monoid m where

mempty :: m

mappend :: m → m → m

Sometimes, we use the infix operation (�) = mappend to make our code easier to
read. All instances must obey the identity and associativity laws:

mempty � m = m � mempty = m

(m1 � m2) � m3 = m1 � (m2 � m3)

Lists are one of the simplest examples of monoids. Their identity element is the
empty list, and their binary operation is concatenation:

instance Monoid [a] where

mempty = []

mappend = ++

Lists are an example of free monoids because they can be generated by any un-
derlying type. For the HomTrainer, when we say that our data set must be a
free monoid, all we mean is that it is a collection of some data points. For the
Scheduling problem, it is just a list of tasks.

A homomorphism from the free monoid is a function that “preserves the free
monoid’s structure.” More formally, if the function is called train, then it obeys
the law that for all xs and ys of type [a]:

train (xs ++ ys) = (train xs) � (train ys)

The LPTF algorithm turns out to have this property. Figure 4 shows this in picture
form with a commutative diagram. This means that it doesn’t matter whether
we take the orange path (first train schedules from our data sets, then combine
the schedules with mappend) or the purple path (first concatenate our data sets,
then train a schedule on the result). Either way, we get the exact same answer.

70

Mike Izbicki: Two Monoids for Approximating NP-Complete Problems

ta,1
ta,2

ta,3

ta,4 ta,5
ta,6

ta,3

ta,6

ta,2

ta,5

ta,1

ta,4

b1 b2 b3

tb,1

tb,2

tb,3 tb,4 tb,5 tb,6 tb,7 tb,8

tb,2

tb,3

tb,4

tb,6

tb,1

tb,7

tb,8

tb,5

b1 b2 b3

ta,1
ta,2

ta,3

ta,4 ta,5
ta,6 tb,1

tb,2

tb,3 tb,4 tb,5 tb,6 tb,7 tb,8

ta,3

ta,5

tb,8

tb,5

ta,2

ta,4

tb,3

tb,4

ta,6

tb,2

ta,1

tb,7

tb,6

tb,1

b1 b2 b3

� =

++ =

d
at

a
se

ts
m

o
d
el

s

Figure 4: The LPTF is a monoid homomorphism because this diagram commutes

Now that we understand what HomTrainer is, we can look at what it gives us.
Most importantly, it gives us a simple interface for interacting with our models.
This interface is shown in Figure 5. In the class, we associate a specific Datapoint

type to our model and get four functions for training functions. The most impor-
tant training function is the batch trainer, called train. This is the homomorphism
that converts the data set into a model. In our case, it will be the LPTF algo-
rithm. The second most important function is the online trainer add1dp. This
function takes a model and a datapoint as input, and “adds” the data point to the
model. Developing new online functions is an important research area in approxi-
mation algorithms. As we will see later, the compiler generates these two functions
automatically for all instances of HomTrainer.

Finally, HLearn comes with a higher order function for making all batch trainers
run efficiently on multiple cores. The function

parallel :: (...) ⇒
(container datapoint → model) → (container datapoint → model)

takes a batch trainer as input and returns a parallelized one as output. In the next
section, we’ll see an example of its use in practice.

71

The Monad.Reader Issue 22

1 class (Monoid model) ⇒ HomTrainer model where

2 type Datapoint model

3
4 -- The singleton trainer

5 train1dp :: Datapoint model → model

6
7 -- The batch trainer

8 train :: (Functor container, Foldable container) ⇒
9 container (Datapoint model) → model

10
11 -- The online trainer

12 add1dp :: model → Datapoint model → model

13
14 -- The online batch trainer

15 addBatch :: (Functor container, Foldable container) ⇒
16 model → container (Datapoint model) → model

Figure 5: The HomTrainer type class

Using the Scheduling HomTrainer

Before we look at implementing a HomTrainer to solve Scheduling, we’ll take a
look at how it’s used. In particular, we’ll look at the Haskell code I used to solve
the problem of grouping my students. In order to run the code, you’ll need to
download the latest HLearn-approximation library:

cabal install HLearn-approximation-1.0.0

Let’s begin by doing some experiments in GHCi to get ourselves oriented. The
Scheduling type is our model, and here we ask GHCi for it’s kind signature:

ghci> import HLearn.NPHard.Scheduling

ghci> :kind Scheduling

Scheduling :: Nat → ∗ → ∗

Scheduling takes two type parameters. The first is a type-level natural number
that specifies the number of processors in our schedule. In HLearn, any parameters
to our training functions must be specified in the model’s type signature. In this
case, the type-level numbers require the DataKinds extension to be enabled. The
second parameter to Scheduling is the type of the task we are trying to schedule.

Next, let’s find out about Scheduling’s HomTrainer instance:

ghci> :info Scheduling

...

72

Mike Izbicki: Two Monoids for Approximating NP-Complete Problems

instance (Norm a,...) ⇒ HomTrainer (Scheduling n a) where

...

We have a constraint on our task parameter specifying that it must be an instance
of Norm. What does that mean? In mathematics, a type has a norm if it has a
“size” of some sort. In HLearn, the Norm type class is defined in two parts. First
we associate a specific number type with our model using the HasRing type class.
Then, the Norm type class defines a function magnitude that converts a model into
the number type.

class (Num (Ring m)) ⇒ HasRing m where

type Ring m

class (HasRing m, Ord (Ring m)) ⇒ Norm m where

magnitude :: m → Ring m

Usually the associated ring will be a Double. But we might make it a Rational if
we need more accuracy or an Int if we don’t want fractions.

Figure 6 shows the code for solving the student groups problem. In this case,
I defined a new data type called Student to be the data points and defined the
magnitude of a Student to be its grade. Notice that since I am deriving an instance
of Ord automatically, I must define grade before name and section. This ensures
that the ordering over students will be determined by their grades, and so be the
same as the ordering over their magnitudes.

The main function is divided up into three logical units. First, we load a CSV
file into a variable allStudents::[Student] using the Cassava package [2]. The
details of how this works aren’t too important.

In the middle section, we divide up the students according to which section they
are in, and then train a Schedule model for each section. We use the function:

getSchedules :: Scheduling n a → [[a]]

to extract a list of schedules from our Schedule type, then print them to the termi-
nal. Just for illustration, we train the third section’s Scheduling model in parallel.
With only about 30 students in the section, we don’t notice any improvement. But
as the data sets grow, more processors provide drastic improvements, as shown in
Table 4.1.

In the last section, we combine our section specific models together to get a
combined model factoring in all of the sections. Because Scheduling is an instance
of HomTrainer, we don’t have to retrain our model from scratch. We can reuse the
work we did in training our original models, resulting in a faster computation.

73

The Monad.Reader Issue 22

1 {-# LANGUAGE TypeFamilies, DataKinds #-}

2
3 import Data.Csv

4 import qualified Data.ByteString.Lazy.Char8 as BS

5 import qualified Data.Vector as V

6 import HLearn.Algebra

7 import HLearn.NPHard.Scheduling

8
9 ---

10
11 data Student = Student

12 { grade :: Double

13 , name :: String

14 , section :: Int

15 }

16 deriving (Read,Show,Eq,Ord)

17
18 instance HasRing Student where

19 type Ring (Student) = Double

20
21 instance Norm Student where

22 magnitude = grade

23
24 ---

25
26 main = do

27 Right allStudents ←
28 fmap (fmap (fmap (λ(n,s,g) → Student g n s) . V.toList) . decode True)

29 $ BS.readFile "students.csv" :: IO (Either String [Student])

30
31 let section1 = filter (λs → 1 == section s) allStudents

32 let section2 = filter (λs → 2 == section s) allStudents

33 let section3 = filter (λs → 3 == section s) allStudents

34 let solution1 = train section1 :: Scheduling 5 Student

35 let solution2 = train section2 :: Scheduling 5 Student

36 let solution3 = parallel train section3 :: Scheduling 5 Student

37 print $ map (map name) $ getSchedules solution1

38
39 let solutionAll = solution1 � solution2 � solution3

40 print $ map (map name) $ getSchedules solutionAll

Figure 6: Solution to my professor’s problem

74

Mike Izbicki: Two Monoids for Approximating NP-Complete Problems

Implementing the LPTF HomTrainer

Now we’re ready to dive into the details of how our model, Scheduling works under
the hood. Scheduling is defined as:

data Scheduling (p::Nat) a = Scheduling

{ vector :: !(SortedVector a)

, schedule :: Map Bin [a]

}

Scheduling has two member variables. The first is a SortedVector. This custom
data type is a wrapper around the vector package’s Vector type that maintains the
invariant that items are always sorted. This vector will be used as an intermediate
data structure while performing the LPTF computations. The second member is
the actual schedule. It is represented as a Map with a Bin as the key and a list of
tasks as the value. Bin is just a type synonym for Int:

type Bin = Int

and it represents the index of the processor in the range of 1 to p.
Before we look at Scheduling’s Monoid and HomTrainer instances, we need to take

a more detailed look at the LPTF algorithm. Traditionally, LPTF is described as
a two step process. First, sort the list of tasks in descending order. Then, iterate
through the sorted list. On each iteration, assign the next task to the processor
with the least amount of work. Figure 7 shows a single iteration of this procedure.

t2 t1 t10 t3

t9

t9 t8 t7 t6 t4 t5

p
ar
ti
al

sc
h
ed

u
le

so
rt
ed

ve
ct
or

b1 b2 b3 b4

Figure 7: A single iteration of the LPTF algorithm

75

The Monad.Reader Issue 22

This conversion process is implemented with the internal function vector2schedule,
whose code is shown in Figure 8 below. The details of this function aren’t par-
ticularly important. What is important is that vector2schedule runs in time
Θ(n log p). This will be important when determining the run times of the mappend

and train functions.

vector2schedule :: (Norm a) ⇒ Int → SortedVector a → Map.Map Int [a]

vector2schedule p vector = snd $ F.foldr cata (emptyheap p,Map.empty) vector

where

emptyheap p = Heap.fromAscList [(0,i) | i←[1..p]]

cata x (heap,map) =
let Just top = Heap.viewHead heap

set = snd top

prio = (fst top)+magnitude x

heap’ = Heap.insert (prio,set) (Heap.drop 1 heap)

map’ = Map.insertWith (++) set [x] map

in (heap’,map’)

Figure 8: The vector2schedule helper function for LPTF

Our mappend operation will implement the LPTF algorithm internally in a way
that reuses the results from the input Schedules. We won’t be able to reuse the
actual schedules, but we can reuse the sorting of the vectors. We do this by taking
advantage of the HomTrainer instance of the SortedVector type. It turns out
that merge sort is a monoid homomorphism, and so SortedVector can be made an
instance of the HomTrainer type class. The commutative diagram for SortedVector
is shown in Figure 9 below.

ta,1
ta,2

ta,3

ta,4 ta,5
ta,6 tb,1

tb,2

tb,3 tb,4 tb,5 tb,6 tb,7 tb,8
ta,1

ta,2
ta,3

ta,4 ta,5
ta,6 tb,1

tb,2

tb,3 tb,4 tb,5 tb,6 tb,7 tb,8

ta,3 ta,2
ta,1 ta,4 ta,5

ta,6

tb,2

tb,3 tb,7 tb,8 tb,6 tb,4 tb,5 tb,1

ta,3 ta,2 tb,2 ta,1 ta,4 ta,5
tb,3 tb,7 tb,8 tb,6 tb,4 tb,5 ta,6 tb,1

�

�

=

=

Figure 9: Constructing a SortedVector is a monoid homomorphism

76

Mike Izbicki: Two Monoids for Approximating NP-Complete Problems

It is important to note that SortedVector’s mappend operation does not take
constant time. In fact, it takes Θ(n) time, where n is the size of both input
vectors put together. The HomTrainer type class makes reasoning about these
non-constant mappend operations easy. By looking up in Table 4.1, we can find
the run times of the derived algorithms. Notice that if the monoid operation takes
time Θ(n), then our batch trainer will take time Θ(n log n), and this is exactly
what we would expect for a sorting. Details of how these numbers were derived
can be found in my TFP13 submission on the HLearn library [3].

Monoid operation Sequential batch trainer Parallel batch trainer Online trainer
(mappend) (train) (parallel train) (add1dp)

Θ(1) Θ(n) Θ
(

n
p

+ log p
)

Θ(1)

Θ(log n) Θ(n) Θ
(

n
p

+ (log n)(log p)
)

Θ(log n)

Θ(n) Θ(n log n) Θ
(

n
p

log n
p

+ n
)

Θ(n)

Θ(nb), b > 1 Θ(nb) no improvement no improvement

Table 4.1: Given a run time for mappend, you can calculate the run time of the
automatically generated functions using this table. The variable n is the total
number of data points being trained on or combined, and the variable p is the
number of processors available.

With all of these building blocks in place, the Monoid instance for Scheduling

is relatively simple. The mempty and mappend operations are exactly the same
as they are for SortedVector, except that we also call the helper function lptf.
This function just packages the SortedVector into a Scheduling type using the
vector2schedule function we saw earlier.

instance (Ord a, Norm a, SingI n) ⇒ Monoid (Scheduling n a) where

mempty = lptf mempty

p1 ‘mappend‘ p2 = lptf $ (vector p1) � (vector p2)

lptf :: forall a p. (Norm a, SingI p) ⇒ SortedVector a → Scheduling p a

lptf vector = Scheduling

{ vector = vector

, schedule = vector2schedule p vector

}

where p = fromIntegral $ fromSing (sing :: Sing n))

Figure 10: The Monoid instance for the Scheduling model

77

The Monad.Reader Issue 22

Since vector2schedule runs in linear time and SortedVector’s mappend runs
in linear time, the Scheduling’s mappend runs in linear time as well. By Table
4.1 again, we have that the automatically derived batch trainer will take time
Θ(n log n). This is exactly what the traditional LPTF algorithm takes.

Of course, we still have to implement the HomTrainer instance. But this is easy.
Inside the HomTrainer class is a function called the “singleton trainer”:

train1dp :: HomTrainer model ⇒ Datapoint model → model

All this function does is create a model from a single data point.1 In practice, such
a singleton model is rarely useful by itself. But if we define it, then the compiler
can then use this function and mappend to build the other functions within the
HomTrainer class automatically. This is how we get the online and parallel functions
“for free.”

The resulting Scheduling instance looks like:

instance (Norm a, SingI n) ⇒ HomTrainer (Scheduling n a) where

type Datapoint (Scheduling n a) = a

train1dp dp = lptf $ train1dp dp

Figure 11: The HomTrainer instance is quite short and mechanical to write

That’s all we need to do to guarantee correct asymptotic performance, but we’ve
got one last trick that will speed up our train function by a constant factor. Recall
that when performing the mappend operation on Scheduling variables, we can only
reuse the work contained inside of vector. The old schedules must be completely
discarded. Since mappend is called many times in our automatically generated
functions, calculating all of these intermediate schedules would give us no benefit
but result in a lot of extra work. That is why in the Scheduling type, the vector

member was declared strict, whereas the schedule member was declared lazy. The
schedules won’t actually be calculated until someone demands them, and since no
one will ever demand a schedule from the intermediate steps, we never calculate
them.

Back to Bin Packing

Since BinPacking and Scheduling were such similar problems, it’s not too sur-
prising that a similar technique can be used to implement a BinPacking model.

1The train1dp function is analogous to the pure function in the Applicative class, or the
return function in the Monad class.

78

Mike Izbicki: Two Monoids for Approximating NP-Complete Problems

The main difference is that we’ll replace the LPTF algorithm with another sim-
ple algorithm called Best Fit Decreasing (BFD). This gives us the performance
guarantee of:

BFD ≤ 11

9
OPT + 1

There are some slightly better approximations for BinPacking, but we won’t look
at them here because they are much more complicated. Chapter 2 of Approxima-
tion Algorithms for NP Hard Problems gives a good overview on the considerable
amount of literature for bin packing [4].

BFD is a two stage algorithm in the same vein as LPTF. First, we sort the data
points by size. Then, we iteratively take the largest item and find the “best” bin
to place it in. The best bin is defined as the bin with the least amount of space
that can still hold the item. If no bins can hold the item, then we create a new
bin and add the item there. This is shown graphically in Figure 12 below.

t9 t8 t7 t6 t4 t5

t2 t1 t10 t3

t9

b1 b2 b3 b4 b5 b6

...

p
ar
ti
al

b
in

p
ac
k
in
g

so
rt
ed

ve
ct
or

Figure 12: One iteration of the Best First Decreasing (BFD) algorithm

The data type for bin packing is:

data BinPacking (n::Nat) a = BinPacking

{ vector :: !(SortedVector a)

, packing :: Map.Map Bin [a]

}

This is the exact same form as the Scheduling type had. The only difference is that
we will use the BFD strategy to generate our Map. Therefore, by similar reasoning,

79

the BinPacking’s mappend function takes time Θ(n) and its train function takes
time Θ(n log n). Again, this is exactly what the traditional description of the BFD
algorithm requires.

Takeaways

Most instances of the HomTrainer type class are related to statistics or machine
learning, but the class is much more general than that. For example, we’ve just
seen how to use HomTrainers to approximate two NP-complete problems. So from
now on, whenever you see a function that has type:

:: [datapoint] → model

ask yourself, “Could this algorithm be implemented using a HomTrainer?” If yes,
you’ll get online and parallel versions for free.

Finally, we’ve looked at the monoid structure for Scheduling and BinPacking,
but these types also have Abelian group, Z-module, functor, and monad structure
as well. I’ll let you explore the documentation available on the GitHub repository
[5] (pull requests are always welcome!) to find creative ways to exploit these
structures. If you have any questions or feedback, I’d love to hear it.

References

[1] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics, 17(2):pages 416–429 (1969).

[2] Cassava: A csv parsing and encoding library. http://hackage.haskell.org/

package/cassava.

[3] Michael Izbicki. Hlearn: A machine learning library for haskell. Trends in Functional
Programming (2013).

[4] E.G. Coffman Jr., M.R. Garey, and D.S. Johnson. Approximation algorithms for
NP-hard problems, chapter Approximation Algorithms for Bin Packing: A Survey.
PWS Publishing Co., Boston, MA, USA (1997).

[5] Hlearn source repository. http://github.com/mikeizbicki/hlearn.

http://hackage.haskell.org/package/cassava
http://hackage.haskell.org/package/cassava
http://github.com/mikeizbicki/hlearn

	Edward Z. Yang: Editorial
	Anton Dergunov: Generalized Algebraic Data Types in Haskell
	Matt Fenwick, Jay Vyas: Error Reporting Parsers: a Monad Transformer Approach
	Mike Izbicki: Two Monoids for Approximating NP-Complete Problems

